Optimal. Leaf size=29 \[ \frac {25 e^5 (1+x) (\log (4)+\log (x))}{-x^2+x (x-\log (x))} \]
________________________________________________________________________________________
Rubi [A] time = 0.40, antiderivative size = 34, normalized size of antiderivative = 1.17, number of steps used = 13, number of rules used = 9, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.237, Rules used = {6688, 12, 6742, 2353, 2306, 2309, 2178, 2302, 30} \begin {gather*} -\frac {25 e^5}{x}-\frac {25 e^5 \log (4)}{\log (x)}-\frac {25 e^5 \log (4)}{x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2178
Rule 2302
Rule 2306
Rule 2309
Rule 2353
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 e^5 \left ((1+x) \log (4)+\log (4) \log (x)+\log ^2(x)\right )}{x^2 \log ^2(x)} \, dx\\ &=\left (25 e^5\right ) \int \frac {(1+x) \log (4)+\log (4) \log (x)+\log ^2(x)}{x^2 \log ^2(x)} \, dx\\ &=\left (25 e^5\right ) \int \left (\frac {1}{x^2}+\frac {(1+x) \log (4)}{x^2 \log ^2(x)}+\frac {\log (4)}{x^2 \log (x)}\right ) \, dx\\ &=-\frac {25 e^5}{x}+\left (25 e^5 \log (4)\right ) \int \frac {1+x}{x^2 \log ^2(x)} \, dx+\left (25 e^5 \log (4)\right ) \int \frac {1}{x^2 \log (x)} \, dx\\ &=-\frac {25 e^5}{x}+\left (25 e^5 \log (4)\right ) \int \left (\frac {1}{x^2 \log ^2(x)}+\frac {1}{x \log ^2(x)}\right ) \, dx+\left (25 e^5 \log (4)\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {25 e^5}{x}+25 e^5 \text {Ei}(-\log (x)) \log (4)+\left (25 e^5 \log (4)\right ) \int \frac {1}{x^2 \log ^2(x)} \, dx+\left (25 e^5 \log (4)\right ) \int \frac {1}{x \log ^2(x)} \, dx\\ &=-\frac {25 e^5}{x}+25 e^5 \text {Ei}(-\log (x)) \log (4)-\frac {25 e^5 \log (4)}{x \log (x)}-\left (25 e^5 \log (4)\right ) \int \frac {1}{x^2 \log (x)} \, dx+\left (25 e^5 \log (4)\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )\\ &=-\frac {25 e^5}{x}+25 e^5 \text {Ei}(-\log (x)) \log (4)-\frac {25 e^5 \log (4)}{\log (x)}-\frac {25 e^5 \log (4)}{x \log (x)}-\left (25 e^5 \log (4)\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {25 e^5}{x}-\frac {25 e^5 \log (4)}{\log (x)}-\frac {25 e^5 \log (4)}{x \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 25, normalized size = 0.86 \begin {gather*} 25 e^5 \left (-\frac {1}{x}-\frac {(1+x) \log (4)}{x \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.44, size = 24, normalized size = 0.83 \begin {gather*} -\frac {25 \, {\left (2 \, {\left (x + 1\right )} e^{5} \log \relax (2) + e^{5} \log \relax (x)\right )}}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 28, normalized size = 0.97 \begin {gather*} -\frac {25 \, {\left (2 \, x e^{5} \log \relax (2) + 2 \, e^{5} \log \relax (2) + e^{5} \log \relax (x)\right )}}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 0.86
method | result | size |
risch | \(-\frac {25 \,{\mathrm e}^{5}}{x}-\frac {50 \,{\mathrm e}^{5} \ln \relax (2) \left (x +1\right )}{x \ln \relax (x )}\) | \(25\) |
norman | \(\frac {-50 \,{\mathrm e}^{5} \ln \relax (2)-25 \,{\mathrm e}^{5} \ln \relax (x )-50 x \,{\mathrm e}^{5} \ln \relax (2)}{x \ln \relax (x )}\) | \(29\) |
default | \(-\frac {25 \,{\mathrm e}^{5}}{x}-50 \,{\mathrm e}^{5} \ln \relax (2) \expIntegralEi \left (1, \ln \relax (x )\right )-\frac {50 \,{\mathrm e}^{5} \ln \relax (2)}{\ln \relax (x )}+50 \,{\mathrm e}^{5} \ln \relax (2) \left (-\frac {1}{x \ln \relax (x )}+\expIntegralEi \left (1, \ln \relax (x )\right )\right )\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 39, normalized size = 1.34 \begin {gather*} 50 \, {\rm Ei}\left (-\log \relax (x)\right ) e^{5} \log \relax (2) - 50 \, e^{5} \Gamma \left (-1, \log \relax (x)\right ) \log \relax (2) - \frac {50 \, e^{5} \log \relax (2)}{\log \relax (x)} - \frac {25 \, e^{5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.08, size = 29, normalized size = 1.00 \begin {gather*} -\frac {25\,{\mathrm {e}}^5}{x}-\frac {25\,{\mathrm {e}}^5\,\left (2\,\ln \relax (2)+2\,x\,\ln \relax (2)\right )}{x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 31, normalized size = 1.07 \begin {gather*} \frac {- 50 x e^{5} \log {\relax (2 )} - 50 e^{5} \log {\relax (2 )}}{x \log {\relax (x )}} - \frac {25 e^{5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________