Optimal. Leaf size=28 \[ \frac {e^{5+e^{10}} \left (-4+\frac {e^x}{x}\right )-x}{5 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 30, normalized size of antiderivative = 1.07, number of steps used = 4, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {12, 14, 2197} \begin {gather*} \frac {e^{x+e^{10}+5}}{5 x^2}-\frac {4 e^{5+e^{10}}}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} e^{e^{10}} \int \frac {e^{5+x} (-2+x)+4 e^5 x}{x^3} \, dx\\ &=\frac {1}{5} e^{e^{10}} \int \left (\frac {e^{5+x} (-2+x)}{x^3}+\frac {4 e^5}{x^2}\right ) \, dx\\ &=-\frac {4 e^{5+e^{10}}}{5 x}+\frac {1}{5} e^{e^{10}} \int \frac {e^{5+x} (-2+x)}{x^3} \, dx\\ &=\frac {e^{5+e^{10}+x}}{5 x^2}-\frac {4 e^{5+e^{10}}}{5 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 0.86 \begin {gather*} \frac {1}{5} e^{5+e^{10}} \left (\frac {e^x}{x^2}-\frac {4}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.44, size = 20, normalized size = 0.71 \begin {gather*} -\frac {{\left (4 \, x e^{5} - e^{\left (x + 5\right )}\right )} e^{\left (e^{10}\right )}}{5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 20, normalized size = 0.71 \begin {gather*} -\frac {{\left (4 \, x e^{5} - e^{\left (x + 5\right )}\right )} e^{\left (e^{10}\right )}}{5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 23, normalized size = 0.82
method | result | size |
norman | \(\frac {-\frac {4 \,{\mathrm e}^{5} {\mathrm e}^{{\mathrm e}^{10}} x}{5}+\frac {{\mathrm e}^{5} {\mathrm e}^{{\mathrm e}^{10}} {\mathrm e}^{x}}{5}}{x^{2}}\) | \(23\) |
risch | \(-\frac {4 \,{\mathrm e}^{{\mathrm e}^{10}+5}}{5 x}+\frac {{\mathrm e}^{{\mathrm e}^{10}+5+x}}{5 x^{2}}\) | \(23\) |
default | \(\frac {{\mathrm e}^{{\mathrm e}^{10}} \left ({\mathrm e}^{5} \left (-\frac {{\mathrm e}^{x}}{x}-\expIntegralEi \left (1, -x \right )\right )-\frac {4 \,{\mathrm e}^{5}}{x}-2 \,{\mathrm e}^{5} \left (-\frac {{\mathrm e}^{x}}{2 x^{2}}-\frac {{\mathrm e}^{x}}{2 x}-\frac {\expIntegralEi \left (1, -x \right )}{2}\right )\right )}{5}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.40, size = 30, normalized size = 1.07 \begin {gather*} \frac {1}{5} \, {\left (e^{5} \Gamma \left (-1, -x\right ) + 2 \, e^{5} \Gamma \left (-2, -x\right ) - \frac {4 \, e^{5}}{x}\right )} e^{\left (e^{10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.52, size = 18, normalized size = 0.64 \begin {gather*} -\frac {{\mathrm {e}}^5\,{\mathrm {e}}^{{\mathrm {e}}^{10}}\,\left (4\,x-{\mathrm {e}}^x\right )}{5\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 29, normalized size = 1.04 \begin {gather*} - \frac {4 e^{5} e^{e^{10}}}{5 x} + \frac {e^{5} e^{x} e^{e^{10}}}{5 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________