Optimal. Leaf size=25 \[ -e^{\frac {18}{x^2}}+\frac {1}{5} \left (-1+e^{2 x}-2 x\right )+x \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 24, normalized size of antiderivative = 0.96, number of steps used = 7, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 14, 2194, 2209} \begin {gather*} -e^{\frac {18}{x^2}}+\frac {3 x}{5}+\frac {e^{2 x}}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {180 e^{\frac {18}{x^2}}+3 x^3+2 e^{2 x} x^3}{x^3} \, dx\\ &=\frac {1}{5} \int \left (2 e^{2 x}+\frac {3 \left (60 e^{\frac {18}{x^2}}+x^3\right )}{x^3}\right ) \, dx\\ &=\frac {2}{5} \int e^{2 x} \, dx+\frac {3}{5} \int \frac {60 e^{\frac {18}{x^2}}+x^3}{x^3} \, dx\\ &=\frac {e^{2 x}}{5}+\frac {3}{5} \int \left (1+\frac {60 e^{\frac {18}{x^2}}}{x^3}\right ) \, dx\\ &=\frac {e^{2 x}}{5}+\frac {3 x}{5}+36 \int \frac {e^{\frac {18}{x^2}}}{x^3} \, dx\\ &=-e^{\frac {18}{x^2}}+\frac {e^{2 x}}{5}+\frac {3 x}{5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 0.96 \begin {gather*} -e^{\frac {18}{x^2}}+\frac {e^{2 x}}{5}+\frac {3 x}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.43, size = 18, normalized size = 0.72 \begin {gather*} \frac {3}{5} \, x + \frac {1}{5} \, e^{\left (2 \, x\right )} - e^{\left (\frac {18}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 18, normalized size = 0.72 \begin {gather*} \frac {3}{5} \, x + \frac {1}{5} \, e^{\left (2 \, x\right )} - e^{\left (\frac {18}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 19, normalized size = 0.76
method | result | size |
default | \(\frac {{\mathrm e}^{2 x}}{5}-{\mathrm e}^{\frac {18}{x^{2}}}+\frac {3 x}{5}\) | \(19\) |
risch | \(\frac {{\mathrm e}^{2 x}}{5}-{\mathrm e}^{\frac {18}{x^{2}}}+\frac {3 x}{5}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 18, normalized size = 0.72 \begin {gather*} \frac {3}{5} \, x + \frac {1}{5} \, e^{\left (2 \, x\right )} - e^{\left (\frac {18}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.08, size = 18, normalized size = 0.72 \begin {gather*} \frac {3\,x}{5}+\frac {{\mathrm {e}}^{2\,x}}{5}-{\mathrm {e}}^{\frac {18}{x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 17, normalized size = 0.68 \begin {gather*} \frac {3 x}{5} - e^{\frac {18}{x^{2}}} + \frac {e^{2 x}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________