Optimal. Leaf size=20 \[ e^{e^{-\frac {e^5+x}{2+x}} x^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} \left (8 x+6 x^2+e^5 x^2+2 x^3\right )}{4+4 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} \left (8 x+\left (6+e^5\right ) x^2+2 x^3\right )}{4+4 x+x^2} \, dx\\ &=\int \frac {e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} \left (8 x+\left (6+e^5\right ) x^2+2 x^3\right )}{(2+x)^2} \, dx\\ &=\int \frac {e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} x \left (8+\left (6+e^5\right ) x+2 x^2\right )}{(2+x)^2} \, dx\\ &=\int \left (e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} \left (-6+e^5\right )+\frac {4 e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} \left (-2+e^5\right )}{(2+x)^2}-\frac {4 e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} \left (-2+e^5\right )}{2+x}+2 e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} (2+x)\right ) \, dx\\ &=2 \int e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} (2+x) \, dx-\left (4 \left (2-e^5\right )\right ) \int \frac {e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}}}{(2+x)^2} \, dx+\left (4 \left (2-e^5\right )\right ) \int \frac {e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}}}{2+x} \, dx+\left (-6+e^5\right ) \int e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} \, dx\\ &=2 \int \left (2 e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}}+e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} x\right ) \, dx-\left (4 \left (2-e^5\right )\right ) \int \frac {e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}}}{(2+x)^2} \, dx+\left (4 \left (2-e^5\right )\right ) \int \frac {e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}}}{2+x} \, dx+\left (-6+e^5\right ) \int e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} \, dx\\ &=2 \int e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} x \, dx+4 \int e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} \, dx-\left (4 \left (2-e^5\right )\right ) \int \frac {e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}}}{(2+x)^2} \, dx+\left (4 \left (2-e^5\right )\right ) \int \frac {e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}}}{2+x} \, dx+\left (-6+e^5\right ) \int e^{e^{-\frac {e^5+x}{2+x}} x^2-\frac {e^5+x}{2+x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.75, size = 20, normalized size = 1.00 \begin {gather*} e^{e^{-\frac {e^5+x}{2+x}} x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 48, normalized size = 2.40 \begin {gather*} e^{\left (\frac {{\left (x^{3} + 2 \, x^{2}\right )} e^{\left (-\frac {x + e^{5}}{x + 2}\right )} - x - e^{5}}{x + 2} + \frac {x + e^{5}}{x + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{3} + x^{2} e^{5} + 6 \, x^{2} + 8 \, x\right )} e^{\left (x^{2} e^{\left (-\frac {x + e^{5}}{x + 2}\right )} - \frac {x + e^{5}}{x + 2}\right )}}{x^{2} + 4 \, x + 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.46, size = 18, normalized size = 0.90
method | result | size |
risch | \({\mathrm e}^{x^{2} {\mathrm e}^{-\frac {{\mathrm e}^{5}+x}{2+x}}}\) | \(18\) |
norman | \(\frac {\left (x \,{\mathrm e}^{\frac {{\mathrm e}^{5}+x}{2+x}} {\mathrm e}^{x^{2} {\mathrm e}^{-\frac {{\mathrm e}^{5}+x}{2+x}}}+2 \,{\mathrm e}^{\frac {{\mathrm e}^{5}+x}{2+x}} {\mathrm e}^{x^{2} {\mathrm e}^{-\frac {{\mathrm e}^{5}+x}{2+x}}}\right ) {\mathrm e}^{-\frac {{\mathrm e}^{5}+x}{2+x}}}{2+x}\) | \(83\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 24, normalized size = 1.20 \begin {gather*} e^{\left (x^{2} e^{\left (-\frac {e^{5}}{x + 2} + \frac {2}{x + 2} - 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.89, size = 17, normalized size = 0.85 \begin {gather*} {\mathrm {e}}^{x^2\,{\mathrm {e}}^{-\frac {x+{\mathrm {e}}^5}{x+2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.61, size = 14, normalized size = 0.70 \begin {gather*} e^{x^{2} e^{- \frac {x + e^{5}}{x + 2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________