Optimal. Leaf size=30 \[ e^{e^{e^x}+x+\frac {\left (4+\frac {5}{\log \left (-3+x^2\right )}\right )^2}{e^4 x}} \]
________________________________________________________________________________________
Rubi [F] time = 58.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-4+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \left (-100 x^2+\left (75-105 x^2\right ) \log \left (-3+x^2\right )+\left (120-40 x^2\right ) \log ^2\left (-3+x^2\right )+e^{4+e^x+x} \left (-3 x^2+x^4\right ) \log ^3\left (-3+x^2\right )+\left (48-16 x^2+e^4 \left (-3 x^2+x^4\right )\right ) \log ^3\left (-3+x^2\right )\right )}{\left (-3 x^2+x^4\right ) \log ^3\left (-3+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-4+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \left (-100 x^2+\left (75-105 x^2\right ) \log \left (-3+x^2\right )+\left (120-40 x^2\right ) \log ^2\left (-3+x^2\right )+e^{4+e^x+x} \left (-3 x^2+x^4\right ) \log ^3\left (-3+x^2\right )+\left (48-16 x^2+e^4 \left (-3 x^2+x^4\right )\right ) \log ^3\left (-3+x^2\right )\right )}{x^2 \left (-3+x^2\right ) \log ^3\left (-3+x^2\right )} \, dx\\ &=\int \left (\exp \left (e^x+x+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right )+\frac {\exp \left (-4+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \left (100 x^2-75 \log \left (-3+x^2\right )+105 x^2 \log \left (-3+x^2\right )-120 \log ^2\left (-3+x^2\right )+40 x^2 \log ^2\left (-3+x^2\right )-48 \log ^3\left (-3+x^2\right )+16 \left (1+\frac {3 e^4}{16}\right ) x^2 \log ^3\left (-3+x^2\right )-e^4 x^4 \log ^3\left (-3+x^2\right )\right )}{x^2 \left (3-x^2\right ) \log ^3\left (-3+x^2\right )}\right ) \, dx\\ &=\int \exp \left (e^x+x+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \, dx+\int \frac {\exp \left (-4+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \left (100 x^2-75 \log \left (-3+x^2\right )+105 x^2 \log \left (-3+x^2\right )-120 \log ^2\left (-3+x^2\right )+40 x^2 \log ^2\left (-3+x^2\right )-48 \log ^3\left (-3+x^2\right )+16 \left (1+\frac {3 e^4}{16}\right ) x^2 \log ^3\left (-3+x^2\right )-e^4 x^4 \log ^3\left (-3+x^2\right )\right )}{x^2 \left (3-x^2\right ) \log ^3\left (-3+x^2\right )} \, dx\\ &=\int \exp \left (e^x+x+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \, dx+\int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right ) \left (100 x^2+15 \left (-5+7 x^2\right ) \log \left (-3+x^2\right )+40 \left (-3+x^2\right ) \log ^2\left (-3+x^2\right )-\left (-3+x^2\right ) \left (-16+e^4 x^2\right ) \log ^3\left (-3+x^2\right )\right )}{x^2 \left (3-x^2\right ) \log ^3\left (-3+x^2\right )} \, dx\\ &=\int \exp \left (e^x+x+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \, dx+\int \left (\frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right ) \left (-16+e^4 x^2\right )}{x^2}-\frac {100 \exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{\left (-3+x^2\right ) \log ^3\left (-3+x^2\right )}-\frac {15 \exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right ) \left (-5+7 x^2\right )}{x^2 \left (-3+x^2\right ) \log ^2\left (-3+x^2\right )}-\frac {40 \exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2 \log \left (-3+x^2\right )}\right ) \, dx\\ &=-\left (15 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right ) \left (-5+7 x^2\right )}{x^2 \left (-3+x^2\right ) \log ^2\left (-3+x^2\right )} \, dx\right )-40 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2 \log \left (-3+x^2\right )} \, dx-100 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{\left (-3+x^2\right ) \log ^3\left (-3+x^2\right )} \, dx+\int \exp \left (e^x+x+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \, dx+\int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right ) \left (-16+e^4 x^2\right )}{x^2} \, dx\\ &=-\left (15 \int \left (\frac {5 \exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{3 x^2 \log ^2\left (-3+x^2\right )}+\frac {16 \exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{3 \left (-3+x^2\right ) \log ^2\left (-3+x^2\right )}\right ) \, dx\right )-40 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2 \log \left (-3+x^2\right )} \, dx-100 \int \left (-\frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{2 \sqrt {3} \left (\sqrt {3}-x\right ) \log ^3\left (-3+x^2\right )}-\frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{2 \sqrt {3} \left (\sqrt {3}+x\right ) \log ^3\left (-3+x^2\right )}\right ) \, dx+\int \exp \left (e^x+x+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \, dx+\int \left (\exp \left (e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )-\frac {16 \exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2}\right ) \, dx\\ &=-\left (16 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2} \, dx\right )-25 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2 \log ^2\left (-3+x^2\right )} \, dx-40 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2 \log \left (-3+x^2\right )} \, dx-80 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{\left (-3+x^2\right ) \log ^2\left (-3+x^2\right )} \, dx+\frac {50 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{\left (\sqrt {3}-x\right ) \log ^3\left (-3+x^2\right )} \, dx}{\sqrt {3}}+\frac {50 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{\left (\sqrt {3}+x\right ) \log ^3\left (-3+x^2\right )} \, dx}{\sqrt {3}}+\int \exp \left (e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right ) \, dx+\int \exp \left (e^x+x+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \, dx\\ &=-\left (16 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2} \, dx\right )-25 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2 \log ^2\left (-3+x^2\right )} \, dx-40 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2 \log \left (-3+x^2\right )} \, dx-80 \int \left (-\frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{2 \sqrt {3} \left (\sqrt {3}-x\right ) \log ^2\left (-3+x^2\right )}-\frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{2 \sqrt {3} \left (\sqrt {3}+x\right ) \log ^2\left (-3+x^2\right )}\right ) \, dx+\frac {50 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{\left (\sqrt {3}-x\right ) \log ^3\left (-3+x^2\right )} \, dx}{\sqrt {3}}+\frac {50 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{\left (\sqrt {3}+x\right ) \log ^3\left (-3+x^2\right )} \, dx}{\sqrt {3}}+\int \exp \left (e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right ) \, dx+\int \exp \left (e^x+x+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \, dx\\ &=-\left (16 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2} \, dx\right )-25 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2 \log ^2\left (-3+x^2\right )} \, dx-40 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{x^2 \log \left (-3+x^2\right )} \, dx+\frac {40 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{\left (\sqrt {3}-x\right ) \log ^2\left (-3+x^2\right )} \, dx}{\sqrt {3}}+\frac {40 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{\left (\sqrt {3}+x\right ) \log ^2\left (-3+x^2\right )} \, dx}{\sqrt {3}}+\frac {50 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{\left (\sqrt {3}-x\right ) \log ^3\left (-3+x^2\right )} \, dx}{\sqrt {3}}+\frac {50 \int \frac {\exp \left (-4+e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right )}{\left (\sqrt {3}+x\right ) \log ^3\left (-3+x^2\right )} \, dx}{\sqrt {3}}+\int \exp \left (e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}\right ) \, dx+\int \exp \left (e^x+x+\frac {25+40 \log \left (-3+x^2\right )+e^{4+e^x} x \log ^2\left (-3+x^2\right )+\left (16+e^4 x^2\right ) \log ^2\left (-3+x^2\right )}{e^4 x \log ^2\left (-3+x^2\right )}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 49, normalized size = 1.63 \begin {gather*} e^{e^{e^x}+\frac {16}{e^4 x}+x+\frac {25}{e^4 x \log ^2\left (-3+x^2\right )}+\frac {40}{e^4 x \log \left (-3+x^2\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.52, size = 75, normalized size = 2.50 \begin {gather*} e^{\left (\frac {{\left (x e^{\left (x + e^{x} + 4\right )} \log \left (x^{2} - 3\right )^{2} + {\left ({\left (x^{2} - 4 \, x\right )} e^{4} + 16\right )} e^{x} \log \left (x^{2} - 3\right )^{2} + 40 \, e^{x} \log \left (x^{2} - 3\right ) + 25 \, e^{x}\right )} e^{\left (-x - 4\right )}}{x \log \left (x^{2} - 3\right )^{2}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.49, size = 65, normalized size = 2.17
method | result | size |
risch | \({\mathrm e}^{\frac {\left ({\mathrm e}^{4} \ln \left (x^{2}-3\right )^{2} x^{2}+x \ln \left (x^{2}-3\right )^{2} {\mathrm e}^{{\mathrm e}^{x}+4}+16 \ln \left (x^{2}-3\right )^{2}+40 \ln \left (x^{2}-3\right )+25\right ) {\mathrm e}^{-4}}{x \ln \left (x^{2}-3\right )^{2}}}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 43, normalized size = 1.43 \begin {gather*} e^{\left (x + \frac {16 \, e^{\left (-4\right )}}{x} + \frac {40 \, e^{\left (-4\right )}}{x \log \left (x^{2} - 3\right )} + \frac {25 \, e^{\left (-4\right )}}{x \log \left (x^{2} - 3\right )^{2}} + e^{\left (e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.43, size = 47, normalized size = 1.57 \begin {gather*} {\mathrm {e}}^{\frac {16\,{\mathrm {e}}^{-4}}{x}}\,{\mathrm {e}}^{\frac {25\,{\mathrm {e}}^{-4}}{x\,{\ln \left (x^2-3\right )}^2}}\,{\mathrm {e}}^{\frac {40\,{\mathrm {e}}^{-4}}{x\,\ln \left (x^2-3\right )}}\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 4.21, size = 60, normalized size = 2.00 \begin {gather*} e^{\frac {x e^{4} e^{e^{x}} \log {\left (x^{2} - 3 \right )}^{2} + \left (x^{2} e^{4} + 16\right ) \log {\left (x^{2} - 3 \right )}^{2} + 40 \log {\left (x^{2} - 3 \right )} + 25}{x e^{4} \log {\left (x^{2} - 3 \right )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________