Optimal. Leaf size=28 \[ \frac {4+x}{-2 e^4+\frac {x}{\left (3-\frac {3 e^x}{x}\right )^2}+\log (3)} \]
________________________________________________________________________________________
Rubi [F] time = 41.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-36 x^4-162 e^4 x^4+81 x^4 \log (3)+e^{4 x} \left (-162 e^4+81 \log (3)\right )+e^{3 x} \left (648 e^4 x-324 x \log (3)\right )+e^{2 x} \left (-108 x^2-972 e^4 x^2+54 x^3+18 x^4+486 x^2 \log (3)\right )+e^x \left (144 x^3+648 e^4 x^3-54 x^4-18 x^5-324 x^3 \log (3)\right )}{324 e^8 x^4-36 e^4 x^5+x^6+\left (-324 e^4 x^4+18 x^5\right ) \log (3)+81 x^4 \log ^2(3)+e^{4 x} \left (324 e^8-324 e^4 \log (3)+81 \log ^2(3)\right )+e^{3 x} \left (-1296 e^8 x+1296 e^4 x \log (3)-324 x \log ^2(3)\right )+e^{2 x} \left (1944 e^8 x^2-36 e^4 x^3+\left (-1944 e^4 x^2+18 x^3\right ) \log (3)+486 x^2 \log ^2(3)\right )+e^x \left (-1296 e^8 x^3+72 e^4 x^4+\left (1296 e^4 x^3-36 x^4\right ) \log (3)-324 x^3 \log ^2(3)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-36-162 e^4\right ) x^4+81 x^4 \log (3)+e^{4 x} \left (-162 e^4+81 \log (3)\right )+e^{3 x} \left (648 e^4 x-324 x \log (3)\right )+e^{2 x} \left (-108 x^2-972 e^4 x^2+54 x^3+18 x^4+486 x^2 \log (3)\right )+e^x \left (144 x^3+648 e^4 x^3-54 x^4-18 x^5-324 x^3 \log (3)\right )}{324 e^8 x^4-36 e^4 x^5+x^6+\left (-324 e^4 x^4+18 x^5\right ) \log (3)+81 x^4 \log ^2(3)+e^{4 x} \left (324 e^8-324 e^4 \log (3)+81 \log ^2(3)\right )+e^{3 x} \left (-1296 e^8 x+1296 e^4 x \log (3)-324 x \log ^2(3)\right )+e^{2 x} \left (1944 e^8 x^2-36 e^4 x^3+\left (-1944 e^4 x^2+18 x^3\right ) \log (3)+486 x^2 \log ^2(3)\right )+e^x \left (-1296 e^8 x^3+72 e^4 x^4+\left (1296 e^4 x^3-36 x^4\right ) \log (3)-324 x^3 \log ^2(3)\right )} \, dx\\ &=\int \frac {x^4 \left (-36-162 e^4+81 \log (3)\right )+e^{4 x} \left (-162 e^4+81 \log (3)\right )+e^{3 x} \left (648 e^4 x-324 x \log (3)\right )+e^{2 x} \left (-108 x^2-972 e^4 x^2+54 x^3+18 x^4+486 x^2 \log (3)\right )+e^x \left (144 x^3+648 e^4 x^3-54 x^4-18 x^5-324 x^3 \log (3)\right )}{324 e^8 x^4-36 e^4 x^5+x^6+\left (-324 e^4 x^4+18 x^5\right ) \log (3)+81 x^4 \log ^2(3)+e^{4 x} \left (324 e^8-324 e^4 \log (3)+81 \log ^2(3)\right )+e^{3 x} \left (-1296 e^8 x+1296 e^4 x \log (3)-324 x \log ^2(3)\right )+e^{2 x} \left (1944 e^8 x^2-36 e^4 x^3+\left (-1944 e^4 x^2+18 x^3\right ) \log (3)+486 x^2 \log ^2(3)\right )+e^x \left (-1296 e^8 x^3+72 e^4 x^4+\left (1296 e^4 x^3-36 x^4\right ) \log (3)-324 x^3 \log ^2(3)\right )} \, dx\\ &=\int \frac {x^4 \left (-36-162 e^4+81 \log (3)\right )+e^{4 x} \left (-162 e^4+81 \log (3)\right )+e^{3 x} \left (648 e^4 x-324 x \log (3)\right )+e^{2 x} \left (-108 x^2-972 e^4 x^2+54 x^3+18 x^4+486 x^2 \log (3)\right )+e^x \left (144 x^3+648 e^4 x^3-54 x^4-18 x^5-324 x^3 \log (3)\right )}{-36 e^4 x^5+x^6+\left (-324 e^4 x^4+18 x^5\right ) \log (3)+x^4 \left (324 e^8+81 \log ^2(3)\right )+e^{4 x} \left (324 e^8-324 e^4 \log (3)+81 \log ^2(3)\right )+e^{3 x} \left (-1296 e^8 x+1296 e^4 x \log (3)-324 x \log ^2(3)\right )+e^{2 x} \left (1944 e^8 x^2-36 e^4 x^3+\left (-1944 e^4 x^2+18 x^3\right ) \log (3)+486 x^2 \log ^2(3)\right )+e^x \left (-1296 e^8 x^3+72 e^4 x^4+\left (1296 e^4 x^3-36 x^4\right ) \log (3)-324 x^3 \log ^2(3)\right )} \, dx\\ &=\int \frac {9 \left (e^x-x\right ) \left (-54 e^{4+x} x^2+18 e^4 x^3 \left (1+\frac {4-9 \log (3)}{18 e^4}\right )+e^x x^2 \left (-12+6 x+2 x^2+27 \log (3)\right )-18 e^{4+3 x} \left (1-\frac {\log (3)}{2 e^4}\right )+54 e^{4+2 x} x \left (1-\frac {\log (3)}{2 e^4}\right )\right )}{\left (18 e^4 x^2-x^2 (x+9 \log (3))+18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )-36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )\right )^2} \, dx\\ &=9 \int \frac {\left (e^x-x\right ) \left (-54 e^{4+x} x^2+18 e^4 x^3 \left (1+\frac {4-9 \log (3)}{18 e^4}\right )+e^x x^2 \left (-12+6 x+2 x^2+27 \log (3)\right )-18 e^{4+3 x} \left (1-\frac {\log (3)}{2 e^4}\right )+54 e^{4+2 x} x \left (1-\frac {\log (3)}{2 e^4}\right )\right )}{\left (18 e^4 x^2-x^2 (x+9 \log (3))+18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )-36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )\right )^2} \, dx\\ &=9 \int \left (-\frac {1}{9 \left (2 e^4-\log (3)\right )}+\frac {2 x^2 \left (6-2 x-x^2\right )}{9 \left (2 e^4-\log (3)\right ) \left (x^3-18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )\right )}+\frac {x^3 (4+x) \left (2 x^3-36 e^{4+x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^4 x \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-3 x^2 \left (1+12 e^4-\log (729)\right )\right )}{9 \left (2 e^4-\log (3)\right ) \left (x^3-18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )\right )^2}\right ) \, dx\\ &=-\frac {x}{2 e^4-\log (3)}+\frac {\int \frac {x^3 (4+x) \left (2 x^3-36 e^{4+x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^4 x \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-3 x^2 \left (1+12 e^4-\log (729)\right )\right )}{\left (x^3-18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )\right )^2} \, dx}{2 e^4-\log (3)}+\frac {2 \int \frac {x^2 \left (6-2 x-x^2\right )}{x^3-18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )} \, dx}{2 e^4-\log (3)}\\ &=-\frac {x}{2 e^4-\log (3)}+\frac {\int \left (\frac {4 x^3 \left (2 x^3-36 e^{4+x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^4 x \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-3 x^2 \left (1+12 e^4-\log (729)\right )\right )}{\left (x^3-18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )\right )^2}+\frac {x^4 \left (2 x^3-36 e^{4+x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^4 x \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-3 x^2 \left (1+12 e^4-\log (729)\right )\right )}{\left (x^3-18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )\right )^2}\right ) \, dx}{2 e^4-\log (3)}+\frac {2 \int \left (\frac {6 x^2}{x^3-18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )}+\frac {2 x^3}{-x^3+18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )-36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )+18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )}+\frac {x^4}{-x^3+18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )-36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )+18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )}\right ) \, dx}{2 e^4-\log (3)}\\ &=-\frac {x}{2 e^4-\log (3)}+\frac {\int \frac {x^4 \left (2 x^3-36 e^{4+x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^4 x \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-3 x^2 \left (1+12 e^4-\log (729)\right )\right )}{\left (x^3-18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )\right )^2} \, dx}{2 e^4-\log (3)}+\frac {2 \int \frac {x^4}{-x^3+18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )-36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )+18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )} \, dx}{2 e^4-\log (3)}+\frac {4 \int \frac {x^3}{-x^3+18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )-36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )+18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )} \, dx}{2 e^4-\log (3)}+\frac {4 \int \frac {x^3 \left (2 x^3-36 e^{4+x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^4 x \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-3 x^2 \left (1+12 e^4-\log (729)\right )\right )}{\left (x^3-18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )\right )^2} \, dx}{2 e^4-\log (3)}+\frac {12 \int \frac {x^2}{x^3-18 e^{4+2 x} \left (1-\frac {\log (3)}{2 e^4}\right )+36 e^{4+x} x \left (1-\frac {\log (3)}{2 e^4}\right )-18 e^4 x^2 \left (1-\frac {\log (3)}{2 e^4}\right )} \, dx}{2 e^4-\log (3)}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.25, size = 79, normalized size = 2.82 \begin {gather*} -\frac {x-\frac {x^3 (4+x)}{-18 e^{4+2 x}+36 e^{4+x} x-18 e^4 x^2+9 e^{2 x} \log (3)-18 e^x x \log (3)+x^2 (x+9 \log (3))}}{2 e^4-\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.52, size = 145, normalized size = 5.18 \begin {gather*} \frac {18 \, x^{3} e^{4} - 9 \, x^{3} \log \relax (3) + 4 \, x^{3} + 9 \, {\left (2 \, x e^{4} - x \log \relax (3)\right )} e^{\left (2 \, x\right )} - 18 \, {\left (2 \, x^{2} e^{4} - x^{2} \log \relax (3)\right )} e^{x}}{2 \, x^{3} e^{4} - 9 \, x^{2} \log \relax (3)^{2} - 36 \, x^{2} e^{8} + 9 \, {\left (4 \, e^{4} \log \relax (3) - \log \relax (3)^{2} - 4 \, e^{8}\right )} e^{\left (2 \, x\right )} - 18 \, {\left (4 \, x e^{4} \log \relax (3) - x \log \relax (3)^{2} - 4 \, x e^{8}\right )} e^{x} - {\left (x^{3} - 36 \, x^{2} e^{4}\right )} \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.11, size = 87, normalized size = 3.11
method | result | size |
risch | \(-\frac {x}{-\ln \relax (3)+2 \,{\mathrm e}^{4}}-\frac {\left (4+x \right ) x^{3}}{\left (-\ln \relax (3)+2 \,{\mathrm e}^{4}\right ) \left (18 \,{\mathrm e}^{2 x +4}-36 x \,{\mathrm e}^{4+x}+18 x^{2} {\mathrm e}^{4}-9 \ln \relax (3) {\mathrm e}^{2 x}+18 x \ln \relax (3) {\mathrm e}^{x}-9 x^{2} \ln \relax (3)-x^{3}\right )}\) | \(87\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.95, size = 131, normalized size = 4.68 \begin {gather*} \frac {x^{3} {\left (18 \, e^{4} - 9 \, \log \relax (3) + 4\right )} - 18 \, x^{2} {\left (2 \, e^{4} - \log \relax (3)\right )} e^{x} + 9 \, x {\left (2 \, e^{4} - \log \relax (3)\right )} e^{\left (2 \, x\right )}}{x^{3} {\left (2 \, e^{4} - \log \relax (3)\right )} + 9 \, {\left (4 \, e^{4} \log \relax (3) - \log \relax (3)^{2} - 4 \, e^{8}\right )} x^{2} - 18 \, {\left (4 \, e^{4} \log \relax (3) - \log \relax (3)^{2} - 4 \, e^{8}\right )} x e^{x} + 9 \, {\left (4 \, e^{4} \log \relax (3) - \log \relax (3)^{2} - 4 \, e^{8}\right )} e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^x\,\left (324\,x^3\,\ln \relax (3)-648\,x^3\,{\mathrm {e}}^4-144\,x^3+54\,x^4+18\,x^5\right )-{\mathrm {e}}^{3\,x}\,\left (648\,x\,{\mathrm {e}}^4-324\,x\,\ln \relax (3)\right )+{\mathrm {e}}^{4\,x}\,\left (162\,{\mathrm {e}}^4-81\,\ln \relax (3)\right )+162\,x^4\,{\mathrm {e}}^4-81\,x^4\,\ln \relax (3)+36\,x^4-{\mathrm {e}}^{2\,x}\,\left (486\,x^2\,\ln \relax (3)-972\,x^2\,{\mathrm {e}}^4-108\,x^2+54\,x^3+18\,x^4\right )}{81\,x^4\,{\ln \relax (3)}^2+{\mathrm {e}}^{4\,x}\,\left (324\,{\mathrm {e}}^8-324\,{\mathrm {e}}^4\,\ln \relax (3)+81\,{\ln \relax (3)}^2\right )+{\mathrm {e}}^{2\,x}\,\left (486\,x^2\,{\ln \relax (3)}^2-36\,x^3\,{\mathrm {e}}^4+1944\,x^2\,{\mathrm {e}}^8-\ln \relax (3)\,\left (1944\,x^2\,{\mathrm {e}}^4-18\,x^3\right )\right )-{\mathrm {e}}^{3\,x}\,\left (1296\,x\,{\mathrm {e}}^8+324\,x\,{\ln \relax (3)}^2-1296\,x\,{\mathrm {e}}^4\,\ln \relax (3)\right )-36\,x^5\,{\mathrm {e}}^4+324\,x^4\,{\mathrm {e}}^8-{\mathrm {e}}^x\,\left (324\,x^3\,{\ln \relax (3)}^2-72\,x^4\,{\mathrm {e}}^4+1296\,x^3\,{\mathrm {e}}^8-\ln \relax (3)\,\left (1296\,x^3\,{\mathrm {e}}^4-36\,x^4\right )\right )+x^6-\ln \relax (3)\,\left (324\,x^4\,{\mathrm {e}}^4-18\,x^5\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.67, size = 119, normalized size = 4.25 \begin {gather*} - \frac {x}{- \log {\relax (3 )} + 2 e^{4}} + \frac {- x^{4} - 4 x^{3}}{- 2 x^{3} e^{4} + x^{3} \log {\relax (3 )} - 36 x^{2} e^{4} \log {\relax (3 )} + 9 x^{2} \log {\relax (3 )}^{2} + 36 x^{2} e^{8} + \left (- 72 x e^{8} - 18 x \log {\relax (3 )}^{2} + 72 x e^{4} \log {\relax (3 )}\right ) e^{x} + \left (- 36 e^{4} \log {\relax (3 )} + 9 \log {\relax (3 )}^{2} + 36 e^{8}\right ) e^{2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________