Optimal. Leaf size=21 \[ 4-\frac {2 (-4+x)}{x^2 \log (5 x) \log (\log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 1.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(-8+2 x) \log (5 x)+((-8+2 x) \log (x)+(-16+2 x) \log (x) \log (5 x)) \log (\log (x))}{x^3 \log (x) \log ^2(5 x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 (-4+x)}{x^3 \log (x) \log (5 x) \log ^2(\log (x))}+\frac {2 (-4+x-8 \log (5 x)+x \log (5 x))}{x^3 \log ^2(5 x) \log (\log (x))}\right ) \, dx\\ &=2 \int \frac {-4+x}{x^3 \log (x) \log (5 x) \log ^2(\log (x))} \, dx+2 \int \frac {-4+x-8 \log (5 x)+x \log (5 x)}{x^3 \log ^2(5 x) \log (\log (x))} \, dx\\ &=2 \int \left (-\frac {4}{x^3 \log (x) \log (5 x) \log ^2(\log (x))}+\frac {1}{x^2 \log (x) \log (5 x) \log ^2(\log (x))}\right ) \, dx+2 \int \frac {-4+x+(-8+x) \log (5 x)}{x^3 \log ^2(5 x) \log (\log (x))} \, dx\\ &=2 \int \left (-\frac {4}{x^3 \log ^2(5 x) \log (\log (x))}+\frac {1}{x^2 \log ^2(5 x) \log (\log (x))}-\frac {8}{x^3 \log (5 x) \log (\log (x))}+\frac {1}{x^2 \log (5 x) \log (\log (x))}\right ) \, dx+2 \int \frac {1}{x^2 \log (x) \log (5 x) \log ^2(\log (x))} \, dx-8 \int \frac {1}{x^3 \log (x) \log (5 x) \log ^2(\log (x))} \, dx\\ &=2 \int \frac {1}{x^2 \log (x) \log (5 x) \log ^2(\log (x))} \, dx+2 \int \frac {1}{x^2 \log ^2(5 x) \log (\log (x))} \, dx+2 \int \frac {1}{x^2 \log (5 x) \log (\log (x))} \, dx-8 \int \frac {1}{x^3 \log (x) \log (5 x) \log ^2(\log (x))} \, dx-8 \int \frac {1}{x^3 \log ^2(5 x) \log (\log (x))} \, dx-16 \int \frac {1}{x^3 \log (5 x) \log (\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 21, normalized size = 1.00 \begin {gather*} \frac {2 (4-x)}{x^2 \log (5 x) \log (\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 25, normalized size = 1.19 \begin {gather*} -\frac {2 \, {\left (x - 4\right )}}{{\left (x^{2} \log \relax (5) + x^{2} \log \relax (x)\right )} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 26, normalized size = 1.24 \begin {gather*} -\frac {2 \, {\left (x - 4\right )}}{x^{2} \log \relax (5) \log \left (\log \relax (x)\right ) + x^{2} \log \relax (x) \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 28, normalized size = 1.33
method | result | size |
risch | \(-\frac {4 i \left (x -4\right )}{x^{2} \left (2 i \ln \relax (5)+2 i \ln \relax (x )\right ) \ln \left (\ln \relax (x )\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 25, normalized size = 1.19 \begin {gather*} -\frac {2 \, {\left (x - 4\right )}}{{\left (x^{2} \log \relax (5) + x^{2} \log \relax (x)\right )} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.75, size = 513, normalized size = 24.43 \begin {gather*} \frac {\frac {x-8\,\ln \left (5\,x\right )+8\,\ln \relax (x)-x\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^2+x\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^3+16\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^2-32\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^3+x\,\left (\ln \left (5\,x\right )-\ln \relax (x)\right )-4}{x^2}+\frac {{\ln \relax (x)}^2\,\left (32\,\ln \relax (x)-32\,\ln \left (5\,x\right )-x+x\,\left (\ln \left (5\,x\right )-\ln \relax (x)\right )+16\right )}{x^2}-\frac {\ln \relax (x)\,\left (32\,\ln \relax (x)-32\,\ln \left (5\,x\right )-x-2\,x\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^2+64\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^2+2\,x\,\left (\ln \left (5\,x\right )-\ln \relax (x)\right )+8\right )}{x^2}}{\ln \left (5\,x\right )}-\frac {\frac {2\,\left (x-4\right )}{x^2\,\ln \left (5\,x\right )}+\frac {2\,\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (x-8\,\ln \left (5\,x\right )+x\,\ln \relax (x)+x\,\left (\ln \left (5\,x\right )-\ln \relax (x)\right )-4\right )}{x^2\,{\ln \left (5\,x\right )}^2}}{\ln \left (\ln \relax (x)\right )}-\frac {32\,\ln \left (5\,x\right )-32\,\ln \relax (x)-32\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^2+x\,\left (2\,\ln \relax (x)-2\,\ln \left (5\,x\right )+{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^2\right )}{x^2}-\frac {\frac {4\,\ln \relax (x)-4\,\ln \left (5\,x\right )+x\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^2+x\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^3-8\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^2-16\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^3+x\,\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}{x^2}+\frac {{\ln \relax (x)}^2\,\left (16\,\ln \relax (x)-16\,\ln \left (5\,x\right )-x+x\,\left (\ln \left (5\,x\right )-\ln \relax (x)\right )+8\right )}{x^2}-\frac {\ln \relax (x)\,\left (x-2\,x\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^2+32\,{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^2-4\right )}{x^2}}{2\,\ln \relax (x)\,\left (\ln \left (5\,x\right )-\ln \relax (x)\right )+{\ln \relax (x)}^2+{\left (\ln \left (5\,x\right )-\ln \relax (x)\right )}^2}+\frac {\ln \relax (x)\,\left (32\,\ln \left (5\,x\right )-32\,\ln \relax (x)+x\,\left (\ln \relax (x)-\ln \left (5\,x\right )+1\right )-16\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 22, normalized size = 1.05 \begin {gather*} \frac {8 - 2 x}{\left (x^{2} \log {\relax (x )} + x^{2} \log {\relax (5 )}\right ) \log {\left (\log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________