Optimal. Leaf size=26 \[ 9 \log \left (\frac {e^{\left (x-x^2\right )^2} x}{1+e^x-x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9+18 x^2-72 x^3+90 x^4-36 x^5+e^x \left (9-9 x+18 x^2-54 x^3+36 x^4\right )}{x+e^x x-x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {9 (-2+x)}{1+e^x-x}+\frac {9 \left (1-x+2 x^2-6 x^3+4 x^4\right )}{x}\right ) \, dx\\ &=-\left (9 \int \frac {-2+x}{1+e^x-x} \, dx\right )+9 \int \frac {1-x+2 x^2-6 x^3+4 x^4}{x} \, dx\\ &=-\left (9 \int \left (-\frac {2}{1+e^x-x}+\frac {x}{1+e^x-x}\right ) \, dx\right )+9 \int \left (-1+\frac {1}{x}+2 x-6 x^2+4 x^3\right ) \, dx\\ &=-9 x+9 x^2-18 x^3+9 x^4+9 \log (x)-9 \int \frac {x}{1+e^x-x} \, dx+18 \int \frac {1}{1+e^x-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 31, normalized size = 1.19 \begin {gather*} -9 \left (-x^2+2 x^3-x^4+\log \left (1+e^x-x\right )-\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 30, normalized size = 1.15 \begin {gather*} 9 \, x^{4} - 18 \, x^{3} + 9 \, x^{2} + 9 \, \log \relax (x) - 9 \, \log \left (-x + e^{x} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 30, normalized size = 1.15 \begin {gather*} 9 \, x^{4} - 18 \, x^{3} + 9 \, x^{2} - 9 \, \log \left (x - e^{x} - 1\right ) + 9 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 31, normalized size = 1.19
method | result | size |
norman | \(9 x^{4}-18 x^{3}+9 x^{2}+9 \ln \relax (x )-9 \ln \left (x -{\mathrm e}^{x}-1\right )\) | \(31\) |
risch | \(9 x^{4}-18 x^{3}+9 x^{2}+9 \ln \relax (x )-9 \ln \left (1+{\mathrm e}^{x}-x \right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 30, normalized size = 1.15 \begin {gather*} 9 \, x^{4} - 18 \, x^{3} + 9 \, x^{2} + 9 \, \log \relax (x) - 9 \, \log \left (-x + e^{x} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 30, normalized size = 1.15 \begin {gather*} 9\,\ln \relax (x)-9\,\ln \left (x-{\mathrm {e}}^x-1\right )+9\,x^2-18\,x^3+9\,x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 29, normalized size = 1.12 \begin {gather*} 9 x^{4} - 18 x^{3} + 9 x^{2} + 9 \log {\relax (x )} - 9 \log {\left (- x + e^{x} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________