Optimal. Leaf size=38 \[ \frac {2+\frac {\frac {e^{1-x}}{x}+x+\frac {4}{x+\log \left (\frac {2}{x}\right )}}{5 x}}{e} \]
________________________________________________________________________________________
Rubi [A] time = 1.26, antiderivative size = 33, normalized size of antiderivative = 0.87, number of steps used = 6, number of rules used = 5, integrand size = 115, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {6688, 12, 6742, 2197, 6687} \begin {gather*} \frac {e^{-x}}{5 x^2}+\frac {4}{5 e x \left (x+\log \left (\frac {2}{x}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2197
Rule 6687
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-1-x} \left (-x \left (e x (2+x)+e^x (-4+8 x)\right )-2 x \left (2 e^x+e (2+x)\right ) \log \left (\frac {2}{x}\right )-e (2+x) \log ^2\left (\frac {2}{x}\right )\right )}{5 x^3 \left (x+\log \left (\frac {2}{x}\right )\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{-1-x} \left (-x \left (e x (2+x)+e^x (-4+8 x)\right )-2 x \left (2 e^x+e (2+x)\right ) \log \left (\frac {2}{x}\right )-e (2+x) \log ^2\left (\frac {2}{x}\right )\right )}{x^3 \left (x+\log \left (\frac {2}{x}\right )\right )^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {e^{-x} (2+x)}{x^3}-\frac {4 \left (-1+2 x+\log \left (\frac {2}{x}\right )\right )}{e x^2 \left (x+\log \left (\frac {2}{x}\right )\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {e^{-x} (2+x)}{x^3} \, dx\right )-\frac {4 \int \frac {-1+2 x+\log \left (\frac {2}{x}\right )}{x^2 \left (x+\log \left (\frac {2}{x}\right )\right )^2} \, dx}{5 e}\\ &=\frac {e^{-x}}{5 x^2}+\frac {4}{5 e x \left (x+\log \left (\frac {2}{x}\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 32, normalized size = 0.84 \begin {gather*} \frac {1}{5} \left (\frac {e^{-x}}{x^2}+\frac {4}{e x \left (x+\log \left (\frac {2}{x}\right )\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 48, normalized size = 1.26 \begin {gather*} \frac {x e^{2} + 4 \, x e^{\left (x + 1\right )} + e^{2} \log \left (\frac {2}{x}\right )}{5 \, {\left (x^{3} e^{\left (x + 2\right )} + x^{2} e^{\left (x + 2\right )} \log \left (\frac {2}{x}\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 59, normalized size = 1.55 \begin {gather*} \frac {x e^{\left (-x + 1\right )} + e^{\left (-x + 1\right )} \log \relax (2) - e^{\left (-x + 1\right )} \log \relax (x) + 4 \, x}{5 \, {\left (x^{3} e + x^{2} e \log \relax (2) - x^{2} e \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.11, size = 36, normalized size = 0.95
method | result | size |
risch | \(\frac {{\mathrm e}^{-x}}{5 x^{2}}+\frac {8 i {\mathrm e}^{-1}}{5 x \left (2 i \ln \relax (2)+2 i x -2 i \ln \relax (x )\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 53, normalized size = 1.39 \begin {gather*} \frac {{\left (x e + e \log \relax (2) - e \log \relax (x)\right )} e^{\left (-x\right )} + 4 \, x}{5 \, {\left (x^{3} e + x^{2} e \log \relax (2) - x^{2} e \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.01, size = 50, normalized size = 1.32 \begin {gather*} \frac {x^2\,\left (\mathrm {e}+4\,{\mathrm {e}}^x\right )+x\,\mathrm {e}\,\ln \left (\frac {2}{x}\right )}{5\,x^4\,{\mathrm {e}}^{x+1}+5\,x^3\,{\mathrm {e}}^{x+1}\,\ln \left (\frac {2}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 31, normalized size = 0.82 \begin {gather*} \frac {4}{5 e x^{2} + 5 e x \log {\left (\frac {2}{x} \right )}} + \frac {e^{- x}}{5 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________