Optimal. Leaf size=30 \[ 1+e^{-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} (-3+x)+x \]
________________________________________________________________________________________
Rubi [F] time = 2.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{3} e^{-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \left (3+3 e^{\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )}+e^{e^5} \left (3+e^{7-e^3 x} (-3+x)-x\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int e^{-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \left (3+3 e^{\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )}+e^{e^5} \left (3+e^{7-e^3 x} (-3+x)-x\right )\right ) \, dx\\ &=\frac {1}{3} \int \left (3+3 e^{-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )}-e^{e^5-e^3 x-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \left (-e^7+e^{e^3 x}\right ) (-3+x)\right ) \, dx\\ &=x-\frac {1}{3} \int e^{e^5-e^3 x-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \left (-e^7+e^{e^3 x}\right ) (-3+x) \, dx+\int e^{-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \, dx\\ &=x-\frac {1}{3} \int \left (e^{e^5-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} (-3+x)-e^{7+e^5-e^3 x-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} (-3+x)\right ) \, dx+\int e^{-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \, dx\\ &=x-\frac {1}{3} \int e^{e^5-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} (-3+x) \, dx+\frac {1}{3} \int e^{7+e^5-e^3 x-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} (-3+x) \, dx+\int e^{-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \, dx\\ &=x+\frac {1}{3} \int \exp \left (7 \left (1+\frac {e^5}{7}\right )-e^3 x-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )\right ) (-3+x) \, dx-\frac {1}{3} \int \left (-3 e^{e^5-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )}+e^{e^5-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} x\right ) \, dx+\int e^{-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \, dx\\ &=x-\frac {1}{3} \int e^{e^5-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} x \, dx+\frac {1}{3} \int \left (-3 \exp \left (7 \left (1+\frac {e^5}{7}\right )-e^3 x-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )\right )+\exp \left (7 \left (1+\frac {e^5}{7}\right )-e^3 x-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )\right ) x\right ) \, dx+\int e^{-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \, dx+\int e^{e^5-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \, dx\\ &=x-\frac {1}{3} \int e^{e^5-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} x \, dx+\frac {1}{3} \int \exp \left (7 \left (1+\frac {e^5}{7}\right )-e^3 x-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )\right ) x \, dx+\int e^{-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \, dx+\int e^{e^5-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )} \, dx-\int \exp \left (7 \left (1+\frac {e^5}{7}\right )-e^3 x-\frac {1}{3} e^{e^5} \left (e^{4-e^3 x}+x\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 33, normalized size = 1.10 \begin {gather*} e^{\frac {1}{3} e^{e^5} \left (-e^{4-e^3 x}-x\right )} (-3+x)+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.45, size = 48, normalized size = 1.60 \begin {gather*} {\left (x e^{\left (\frac {1}{3} \, {\left (x e^{3} + e^{\left (-x e^{3} + 7\right )}\right )} e^{\left (e^{5} - 3\right )}\right )} + x - 3\right )} e^{\left (-\frac {1}{3} \, {\left (x e^{3} + e^{\left (-x e^{3} + 7\right )}\right )} e^{\left (e^{5} - 3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{3} \, {\left ({\left ({\left (x - 3\right )} e^{\left (-x e^{3} + 7\right )} - x + 3\right )} e^{\left (e^{5}\right )} + 3 \, e^{\left (\frac {1}{3} \, {\left (x + e^{\left (-x e^{3} + 4\right )}\right )} e^{\left (e^{5}\right )}\right )} + 3\right )} e^{\left (-\frac {1}{3} \, {\left (x + e^{\left (-x e^{3} + 4\right )}\right )} e^{\left (e^{5}\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 26, normalized size = 0.87
method | result | size |
risch | \(x +\frac {\left (3 x -9\right ) {\mathrm e}^{-\frac {\left ({\mathrm e}^{-x \,{\mathrm e}^{3}+4}+x \right ) {\mathrm e}^{{\mathrm e}^{5}}}{3}}}{3}\) | \(26\) |
norman | \(\left (-3+x +x \,{\mathrm e}^{\frac {\left ({\mathrm e}^{-x \,{\mathrm e}^{3}+4}+x \right ) {\mathrm e}^{{\mathrm e}^{5}}}{3}}\right ) {\mathrm e}^{-\frac {\left ({\mathrm e}^{-x \,{\mathrm e}^{3}+4}+x \right ) {\mathrm e}^{{\mathrm e}^{5}}}{3}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 26, normalized size = 0.87 \begin {gather*} {\left (x - 3\right )} e^{\left (-\frac {1}{3} \, x e^{\left (e^{5}\right )} - \frac {1}{3} \, e^{\left (-x e^{3} + e^{5} + 4\right )}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.28, size = 48, normalized size = 1.60 \begin {gather*} x-3\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^{{\mathrm {e}}^5}}{3}-\frac {{\mathrm {e}}^4\,{\mathrm {e}}^{-x\,{\mathrm {e}}^3}\,{\mathrm {e}}^{{\mathrm {e}}^5}}{3}}+x\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^{{\mathrm {e}}^5}}{3}-\frac {{\mathrm {e}}^4\,{\mathrm {e}}^{-x\,{\mathrm {e}}^3}\,{\mathrm {e}}^{{\mathrm {e}}^5}}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 24, normalized size = 0.80 \begin {gather*} x + \left (x - 3\right ) e^{- \left (\frac {x}{3} + \frac {e^{- x e^{3} + 4}}{3}\right ) e^{e^{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________