Optimal. Leaf size=30 \[ \frac {4}{x \left (e+\frac {1+x}{4}-\log \left (-x+e^{x^2} x\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.94, antiderivative size = 28, normalized size of antiderivative = 0.93, number of steps used = 4, number of rules used = 4, integrand size = 212, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {6, 6688, 12, 6687} \begin {gather*} \frac {16}{x \left (-4 \log \left (-\left (\left (1-e^{x^2}\right ) x\right )\right )+x+4 e+1\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 6687
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-48+64 e+32 x+e^{x^2} \left (48-64 e-32 x+128 x^2\right )+\left (-64+64 e^{x^2}\right ) \log \left (-x+e^{x^2} x\right )}{\left (-1-16 e^2\right ) x^2-2 x^3-x^4+e \left (-8 x^2-8 x^3\right )+e^{x^2} \left (x^2+16 e^2 x^2+2 x^3+x^4+e \left (8 x^2+8 x^3\right )\right )+\left (8 x^2+32 e x^2+8 x^3+e^{x^2} \left (-8 x^2-32 e x^2-8 x^3\right )\right ) \log \left (-x+e^{x^2} x\right )+\left (-16 x^2+16 e^{x^2} x^2\right ) \log ^2\left (-x+e^{x^2} x\right )} \, dx\\ &=\int \frac {16 \left (3 \left (1-\frac {4 e}{3}\right )+4 e^{1+x^2}-2 x-e^{x^2} \left (3-2 x+8 x^2\right )-4 \left (-1+e^{x^2}\right ) \log \left (\left (-1+e^{x^2}\right ) x\right )\right )}{\left (1-e^{x^2}\right ) x^2 \left (1+4 e+x-4 \log \left (\left (-1+e^{x^2}\right ) x\right )\right )^2} \, dx\\ &=16 \int \frac {3 \left (1-\frac {4 e}{3}\right )+4 e^{1+x^2}-2 x-e^{x^2} \left (3-2 x+8 x^2\right )-4 \left (-1+e^{x^2}\right ) \log \left (\left (-1+e^{x^2}\right ) x\right )}{\left (1-e^{x^2}\right ) x^2 \left (1+4 e+x-4 \log \left (\left (-1+e^{x^2}\right ) x\right )\right )^2} \, dx\\ &=\frac {16}{x \left (1+4 e+x-4 \log \left (-\left (\left (1-e^{x^2}\right ) x\right )\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 26, normalized size = 0.87 \begin {gather*} \frac {16}{x+4 e x+x^2-4 x \log \left (\left (-1+e^{x^2}\right ) x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 28, normalized size = 0.93 \begin {gather*} \frac {16}{x^{2} + 4 \, x e - 4 \, x \log \left (x e^{\left (x^{2}\right )} - x\right ) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 28, normalized size = 0.93 \begin {gather*} \frac {16}{x^{2} + 4 \, x e - 4 \, x \log \left (x e^{\left (x^{2}\right )} - x\right ) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.18, size = 128, normalized size = 4.27
method | result | size |
risch | \(-\frac {16 i}{x \left (2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x^{2}}-1\right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x^{2}}-1\right )\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x^{2}}-1\right )\right )^{2}-2 \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x^{2}}-1\right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x^{2}}-1\right )\right )^{2}+2 \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{x^{2}}-1\right )\right )^{3}-4 i {\mathrm e}-i x +4 i \ln \relax (x )+4 i \ln \left ({\mathrm e}^{x^{2}}-1\right )-i\right )}\) | \(128\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 31, normalized size = 1.03 \begin {gather*} \frac {16}{x^{2} + x {\left (4 \, e + 1\right )} - 4 \, x \log \relax (x) - 4 \, x \log \left (e^{\left (x^{2}\right )} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {32\,x+64\,\mathrm {e}+\ln \left (x\,{\mathrm {e}}^{x^2}-x\right )\,\left (64\,{\mathrm {e}}^{x^2}-64\right )-{\mathrm {e}}^{x^2}\,\left (-128\,x^2+32\,x+64\,\mathrm {e}-48\right )-48}{\mathrm {e}\,\left (8\,x^3+8\,x^2\right )-{\ln \left (x\,{\mathrm {e}}^{x^2}-x\right )}^2\,\left (16\,x^2\,{\mathrm {e}}^{x^2}-16\,x^2\right )-\ln \left (x\,{\mathrm {e}}^{x^2}-x\right )\,\left (32\,x^2\,\mathrm {e}-{\mathrm {e}}^{x^2}\,\left (32\,x^2\,\mathrm {e}+8\,x^2+8\,x^3\right )+8\,x^2+8\,x^3\right )-{\mathrm {e}}^{x^2}\,\left (\mathrm {e}\,\left (8\,x^3+8\,x^2\right )+16\,x^2\,{\mathrm {e}}^2+x^2+2\,x^3+x^4\right )+16\,x^2\,{\mathrm {e}}^2+x^2+2\,x^3+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 27, normalized size = 0.90 \begin {gather*} - \frac {16}{- x^{2} + 4 x \log {\left (x e^{x^{2}} - x \right )} - 4 e x - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________