Optimal. Leaf size=25 \[ \frac {4 x}{(-5+x) \left (-3+8 x-\log \left ((1-x)^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-60+20 x+40 x^2-32 x^3+(-20+20 x) \log \left (1-2 x+x^2\right )}{-225+1515 x-3379 x^2+2777 x^3-752 x^4+64 x^5+\left (-150+610 x-626 x^2+182 x^3-16 x^4\right ) \log \left (1-2 x+x^2\right )+\left (-25+35 x-11 x^2+x^3\right ) \log ^2\left (1-2 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (15-5 x-10 x^2+8 x^3-5 (-1+x) \log \left ((-1+x)^2\right )\right )}{(1-x) (5-x)^2 \left (3-8 x+\log \left ((-1+x)^2\right )\right )^2} \, dx\\ &=4 \int \frac {15-5 x-10 x^2+8 x^3-5 (-1+x) \log \left ((-1+x)^2\right )}{(1-x) (5-x)^2 \left (3-8 x+\log \left ((-1+x)^2\right )\right )^2} \, dx\\ &=4 \int \left (-\frac {2 x (-5+4 x)}{(-5+x) (-1+x) \left (-3+8 x-\log \left ((-1+x)^2\right )\right )^2}-\frac {5}{(-5+x)^2 \left (-3+8 x-\log \left ((-1+x)^2\right )\right )}\right ) \, dx\\ &=-\left (8 \int \frac {x (-5+4 x)}{(-5+x) (-1+x) \left (-3+8 x-\log \left ((-1+x)^2\right )\right )^2} \, dx\right )-20 \int \frac {1}{(-5+x)^2 \left (-3+8 x-\log \left ((-1+x)^2\right )\right )} \, dx\\ &=-\left (8 \int \left (\frac {4}{\left (-3+8 x-\log \left ((-1+x)^2\right )\right )^2}+\frac {75}{4 (-5+x) \left (-3+8 x-\log \left ((-1+x)^2\right )\right )^2}+\frac {1}{4 (-1+x) \left (-3+8 x-\log \left ((-1+x)^2\right )\right )^2}\right ) \, dx\right )-20 \int \frac {1}{(-5+x)^2 \left (-3+8 x-\log \left ((-1+x)^2\right )\right )} \, dx\\ &=-\left (2 \int \frac {1}{(-1+x) \left (-3+8 x-\log \left ((-1+x)^2\right )\right )^2} \, dx\right )-20 \int \frac {1}{(-5+x)^2 \left (-3+8 x-\log \left ((-1+x)^2\right )\right )} \, dx-32 \int \frac {1}{\left (-3+8 x-\log \left ((-1+x)^2\right )\right )^2} \, dx-150 \int \frac {1}{(-5+x) \left (-3+8 x-\log \left ((-1+x)^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 23, normalized size = 0.92 \begin {gather*} -\frac {4 x}{(-5+x) \left (-5-8 (-1+x)+\log \left ((-1+x)^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 29, normalized size = 1.16 \begin {gather*} \frac {4 \, x}{8 \, x^{2} - {\left (x - 5\right )} \log \left (x^{2} - 2 \, x + 1\right ) - 43 \, x + 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 38, normalized size = 1.52 \begin {gather*} \frac {4 \, x}{8 \, x^{2} - x \log \left (x^{2} - 2 \, x + 1\right ) - 43 \, x + 5 \, \log \left (x^{2} - 2 \, x + 1\right ) + 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 27, normalized size = 1.08
method | result | size |
risch | \(\frac {4 x}{\left (x -5\right ) \left (8 x -\ln \left (x^{2}-2 x +1\right )-3\right )}\) | \(27\) |
norman | \(\frac {4 x}{8 x^{2}-\ln \left (x^{2}-2 x +1\right ) x -43 x +5 \ln \left (x^{2}-2 x +1\right )+15}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 24, normalized size = 0.96 \begin {gather*} \frac {4 \, x}{8 \, x^{2} - 2 \, {\left (x - 5\right )} \log \left (x - 1\right ) - 43 \, x + 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.26, size = 24, normalized size = 0.96 \begin {gather*} -\frac {4\,x}{\left (x-5\right )\,\left (\ln \left (x^2-2\,x+1\right )-8\,x+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 27, normalized size = 1.08 \begin {gather*} - \frac {4 x}{- 8 x^{2} + 43 x + \left (x - 5\right ) \log {\left (x^{2} - 2 x + 1 \right )} - 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________