Optimal. Leaf size=34 \[ 25 e^{-2 x}+\frac {e^{e^x+x}-\frac {5 e^{-e^x}}{x}}{x}+\log (3) \]
________________________________________________________________________________________
Rubi [F] time = 1.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e^x-2 x} \left (10 e^{2 x}+5 e^{3 x} x-50 e^{e^x} x^3+e^{2 e^x+x} \left (e^{3 x} x^2+e^{2 x} \left (-x+x^2\right )\right )\right )}{x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-50 e^{-2 x}+\frac {10 e^{-e^x}}{x^3}+\frac {e^{-e^x-2 x+2 \left (e^x+2 x\right )}}{x}+\frac {e^{-e^x+x} \left (5-e^{2 e^x}+e^{2 e^x} x\right )}{x^2}\right ) \, dx\\ &=10 \int \frac {e^{-e^x}}{x^3} \, dx-50 \int e^{-2 x} \, dx+\int \frac {e^{-e^x-2 x+2 \left (e^x+2 x\right )}}{x} \, dx+\int \frac {e^{-e^x+x} \left (5-e^{2 e^x}+e^{2 e^x} x\right )}{x^2} \, dx\\ &=25 e^{-2 x}+10 \int \frac {e^{-e^x}}{x^3} \, dx+\int \frac {e^{-e^x+x} \left (5+e^{2 e^x} (-1+x)\right )}{x^2} \, dx+\int \frac {e^{e^x+2 x}}{x} \, dx\\ &=25 e^{-2 x}+10 \int \frac {e^{-e^x}}{x^3} \, dx+\int \left (\frac {5 e^{-e^x+x}}{x^2}+\frac {e^{e^x+x} (-1+x)}{x^2}\right ) \, dx+\int \frac {e^{e^x+2 x}}{x} \, dx\\ &=25 e^{-2 x}+5 \int \frac {e^{-e^x+x}}{x^2} \, dx+10 \int \frac {e^{-e^x}}{x^3} \, dx+\int \frac {e^{e^x+x} (-1+x)}{x^2} \, dx+\int \frac {e^{e^x+2 x}}{x} \, dx\\ &=25 e^{-2 x}+5 \int \frac {e^{-e^x+x}}{x^2} \, dx+10 \int \frac {e^{-e^x}}{x^3} \, dx+\int \left (-\frac {e^{e^x+x}}{x^2}+\frac {e^{e^x+x}}{x}\right ) \, dx+\int \frac {e^{e^x+2 x}}{x} \, dx\\ &=25 e^{-2 x}+5 \int \frac {e^{-e^x+x}}{x^2} \, dx+10 \int \frac {e^{-e^x}}{x^3} \, dx-\int \frac {e^{e^x+x}}{x^2} \, dx+\int \frac {e^{e^x+x}}{x} \, dx+\int \frac {e^{e^x+2 x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 31, normalized size = 0.91 \begin {gather*} 25 e^{-2 x}-\frac {5 e^{-e^x}}{x^2}+\frac {e^{e^x+x}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 39, normalized size = 1.15 \begin {gather*} \frac {{\left (25 \, x^{2} e^{\left (e^{x}\right )} + x e^{\left (3 \, x + 2 \, e^{x}\right )} - 5 \, e^{\left (2 \, x\right )}\right )} e^{\left (-2 \, x - e^{x}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (50 \, x^{3} e^{\left (e^{x}\right )} - 5 \, x e^{\left (3 \, x\right )} - {\left (x^{2} e^{\left (3 \, x\right )} + {\left (x^{2} - x\right )} e^{\left (2 \, x\right )}\right )} e^{\left (x + 2 \, e^{x}\right )} - 10 \, e^{\left (2 \, x\right )}\right )} e^{\left (-2 \, x - e^{x}\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 27, normalized size = 0.79
method | result | size |
risch | \(25 \,{\mathrm e}^{-2 x}+\frac {{\mathrm e}^{{\mathrm e}^{x}+x}}{x}-\frac {5 \,{\mathrm e}^{-{\mathrm e}^{x}}}{x^{2}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 26, normalized size = 0.76 \begin {gather*} \frac {x e^{\left (x + e^{x}\right )} - 5 \, e^{\left (-e^{x}\right )}}{x^{2}} + 25 \, e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.20, size = 26, normalized size = 0.76 \begin {gather*} 25\,{\mathrm {e}}^{-2\,x}+\frac {{\mathrm {e}}^{x+{\mathrm {e}}^x}}{x}-\frac {5\,{\mathrm {e}}^{-{\mathrm {e}}^x}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 29, normalized size = 0.85 \begin {gather*} 25 e^{- 2 x} + \frac {x^{2} e^{x} e^{e^{x}} - 5 x e^{- e^{x}}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________