Optimal. Leaf size=12 \[ \log \left (\frac {-16+e^{8 x}}{x}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.23, antiderivative size = 49, normalized size of antiderivative = 4.08, number of steps used = 20, number of rules used = 8, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {6742, 2282, 36, 31, 29, 800, 628, 43} \begin {gather*} \log \left (2-e^{2 x}\right )+\log \left (e^{2 x}+2\right )+\log \left (-2 e^x+e^{2 x}+2\right )+\log \left (2 e^x+e^{2 x}+2\right )-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 43
Rule 628
Rule 800
Rule 2282
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4}{-2+e^{2 x}}-\frac {4}{2+e^{2 x}}+\frac {2 \left (-2+e^x\right )}{2-2 e^x+e^{2 x}}-\frac {2 \left (2+e^x\right )}{2+2 e^x+e^{2 x}}+\frac {-1+8 x}{x}\right ) \, dx\\ &=2 \int \frac {-2+e^x}{2-2 e^x+e^{2 x}} \, dx-2 \int \frac {2+e^x}{2+2 e^x+e^{2 x}} \, dx+4 \int \frac {1}{-2+e^{2 x}} \, dx-4 \int \frac {1}{2+e^{2 x}} \, dx+\int \frac {-1+8 x}{x} \, dx\\ &=2 \operatorname {Subst}\left (\int \frac {1}{(-2+x) x} \, dx,x,e^{2 x}\right )-2 \operatorname {Subst}\left (\int \frac {1}{x (2+x)} \, dx,x,e^{2 x}\right )+2 \operatorname {Subst}\left (\int \frac {-2+x}{x \left (2-2 x+x^2\right )} \, dx,x,e^x\right )-2 \operatorname {Subst}\left (\int \frac {2+x}{x \left (2+2 x+x^2\right )} \, dx,x,e^x\right )+\int \left (8-\frac {1}{x}\right ) \, dx\\ &=8 x-\log (x)+2 \operatorname {Subst}\left (\int \left (-\frac {1}{x}+\frac {-1+x}{2-2 x+x^2}\right ) \, dx,x,e^x\right )-2 \operatorname {Subst}\left (\int \left (\frac {1}{x}+\frac {-1-x}{2+2 x+x^2}\right ) \, dx,x,e^x\right )+\operatorname {Subst}\left (\int \frac {1}{-2+x} \, dx,x,e^{2 x}\right )-2 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{2 x}\right )+\operatorname {Subst}\left (\int \frac {1}{2+x} \, dx,x,e^{2 x}\right )\\ &=\log \left (2-e^{2 x}\right )+\log \left (2+e^{2 x}\right )-\log (x)+2 \operatorname {Subst}\left (\int \frac {-1+x}{2-2 x+x^2} \, dx,x,e^x\right )-2 \operatorname {Subst}\left (\int \frac {-1-x}{2+2 x+x^2} \, dx,x,e^x\right )\\ &=\log \left (2-e^{2 x}\right )+\log \left (2+e^{2 x}\right )+\log \left (2-2 e^x+e^{2 x}\right )+\log \left (2+2 e^x+e^{2 x}\right )-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 15, normalized size = 1.25 \begin {gather*} \log \left (16-e^{8 x}\right )-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 12, normalized size = 1.00 \begin {gather*} -\log \relax (x) + \log \left (e^{\left (8 \, x\right )} - 16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 12, normalized size = 1.00 \begin {gather*} -\log \relax (x) + \log \left (e^{\left (8 \, x\right )} - 16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 13, normalized size = 1.08
method | result | size |
norman | \(-\ln \relax (x )+\ln \left ({\mathrm e}^{8 x}-16\right )\) | \(13\) |
risch | \(-\ln \relax (x )+\ln \left ({\mathrm e}^{8 x}-16\right )\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 41, normalized size = 3.42 \begin {gather*} -\log \relax (x) + \log \left (e^{\left (2 \, x\right )} + 2 \, e^{x} + 2\right ) + \log \left (e^{\left (2 \, x\right )} - 2 \, e^{x} + 2\right ) + \log \left (e^{\left (2 \, x\right )} + 2\right ) + \log \left (e^{\left (2 \, x\right )} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.95, size = 12, normalized size = 1.00 \begin {gather*} \ln \left ({\mathrm {e}}^{8\,x}-16\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 10, normalized size = 0.83 \begin {gather*} - \log {\relax (x )} + \log {\left (e^{8 x} - 16 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________