Optimal. Leaf size=30 \[ e^{\frac {-1+\frac {3}{e^{10} x^2}-x}{-1+\log \left (\frac {x}{5 \log (x)}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 14.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {3+e^{10} \left (-x^2-x^3\right )}{-e^{10} x^2+e^{10} x^2 \log \left (\frac {x}{5 \log (x)}\right )}\right ) \left (3+e^{10} \left (-x^2-x^3\right )+\left (3+e^{10} \left (x^2+2 x^3\right )\right ) \log (x)+\left (-6-e^{10} x^3\right ) \log (x) \log \left (\frac {x}{5 \log (x)}\right )\right )}{e^{10} x^3 \log (x)-2 e^{10} x^3 \log (x) \log \left (\frac {x}{5 \log (x)}\right )+e^{10} x^3 \log (x) \log ^2\left (\frac {x}{5 \log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) \left (3+e^{10} \left (-x^2-x^3\right )+\left (3+e^{10} \left (x^2+2 x^3\right )\right ) \log (x)+\left (-6-e^{10} x^3\right ) \log (x) \log \left (\frac {x}{5 \log (x)}\right )\right )}{x^3 \log (x) \left (1-\log \left (\frac {x}{5 \log (x)}\right )\right )^2} \, dx\\ &=\int \left (\frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) \left (-3+e^{10} x^2+e^{10} x^3\right ) (-1+\log (x))}{x^3 \log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2}+\frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) \left (-6-e^{10} x^3\right )}{x^3 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) \, dx\\ &=\int \frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) \left (-3+e^{10} x^2+e^{10} x^3\right ) (-1+\log (x))}{x^3 \log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2} \, dx+\int \frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) \left (-6-e^{10} x^3\right )}{x^3 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )} \, dx\\ &=\int \left (\frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) (-1+\log (x))}{\log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2}-\frac {3 \exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) (-1+\log (x))}{x^3 \log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2}+\frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) (-1+\log (x))}{x \log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2}\right ) \, dx+\int \left (-\frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{-1+\log \left (\frac {x}{5 \log (x)}\right )}-\frac {6 \exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x^3 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) \, dx\\ &=-\left (3 \int \frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) (-1+\log (x))}{x^3 \log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2} \, dx\right )-6 \int \frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x^3 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )} \, dx+\int \frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) (-1+\log (x))}{\log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2} \, dx+\int \frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right ) (-1+\log (x))}{x \log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2} \, dx-\int \frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{-1+\log \left (\frac {x}{5 \log (x)}\right )} \, dx\\ &=-\left (3 \int \left (\frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x^3 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2}-\frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x^3 \log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2}\right ) \, dx\right )-6 \int \frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x^3 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )} \, dx+\int \left (\frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{\left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2}-\frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{\log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2}\right ) \, dx+\int \left (\frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2}-\frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x \log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2}\right ) \, dx-\int \frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{-1+\log \left (\frac {x}{5 \log (x)}\right )} \, dx\\ &=-\left (3 \int \frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x^3 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2} \, dx\right )+3 \int \frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x^3 \log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2} \, dx-6 \int \frac {\exp \left (-10+\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x^3 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )} \, dx+\int \frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{\left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2} \, dx+\int \frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2} \, dx-\int \frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{\log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2} \, dx-\int \frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{x \log (x) \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )^2} \, dx-\int \frac {\exp \left (\frac {3-e^{10} x^2-e^{10} x^3}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}\right )}{-1+\log \left (\frac {x}{5 \log (x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 36, normalized size = 1.20 \begin {gather*} e^{\frac {3-e^{10} x^2 (1+x)}{e^{10} x^2 \left (-1+\log \left (\frac {x}{5 \log (x)}\right )\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 39, normalized size = 1.30 \begin {gather*} e^{\left (-\frac {{\left (x^{3} + x^{2}\right )} e^{10} - 3}{x^{2} e^{10} \log \left (\frac {x}{5 \, \log \relax (x)}\right ) - x^{2} e^{10}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 29.40, size = 90, normalized size = 3.00 \begin {gather*} e^{\left (-\frac {x^{3} e^{10}}{x^{2} e^{10} \log \left (\frac {x}{5 \, \log \relax (x)}\right ) - x^{2} e^{10}} - \frac {x^{2} e^{10}}{x^{2} e^{10} \log \left (\frac {x}{5 \, \log \relax (x)}\right ) - x^{2} e^{10}} + \frac {3}{x^{2} e^{10} \log \left (\frac {x}{5 \, \log \relax (x)}\right ) - x^{2} e^{10}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 12.67, size = 124, normalized size = 4.13
method | result | size |
risch | \({\mathrm e}^{\frac {2 \left (x^{3} {\mathrm e}^{10}+x^{2} {\mathrm e}^{10}-3\right ) {\mathrm e}^{-10}}{x^{2} \left (i \pi \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )+i \pi \,\mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-2 \ln \relax (x )+2 \ln \relax (5)+2 \ln \left (\ln \relax (x )\right )+2\right )}}\) | \(124\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.64, size = 69, normalized size = 2.30 \begin {gather*} {\mathrm {e}}^{-\frac {3}{x^2\,{\mathrm {e}}^{10}+x^2\,{\mathrm {e}}^{10}\,\ln \relax (5)-x^2\,{\mathrm {e}}^{10}\,\ln \left (\frac {x}{\ln \relax (x)}\right )}}\,{\mathrm {e}}^{\frac {x}{\ln \relax (5)-\ln \left (\frac {x}{\ln \relax (x)}\right )+1}}\,{\mathrm {e}}^{\frac {1}{\ln \relax (5)-\ln \left (\frac {x}{\ln \relax (x)}\right )+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.51, size = 36, normalized size = 1.20 \begin {gather*} e^{\frac {\left (- x^{3} - x^{2}\right ) e^{10} + 3}{x^{2} e^{10} \log {\left (\frac {x}{5 \log {\relax (x )}} \right )} - x^{2} e^{10}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________