Optimal. Leaf size=30 \[ \frac {5 e^{-x} \left (e^4+e^{1+2 x}\right )^2}{x \left (x+x^2\right )} \]
________________________________________________________________________________________
Rubi [B] time = 1.68, antiderivative size = 109, normalized size of antiderivative = 3.63, number of steps used = 35, number of rules used = 5, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {1594, 27, 6742, 2177, 2178} \begin {gather*} \frac {5 e^{8-x}}{x^2}+\frac {10 e^{x+5}}{x^2}+\frac {5 e^{3 x+2}}{x^2}+\frac {5 e^{8-x}}{x+1}+\frac {10 e^{x+5}}{x+1}+\frac {5 e^{3 x+2}}{x+1}-\frac {5 e^{8-x}}{x}-\frac {10 e^{x+5}}{x}-\frac {5 e^{3 x+2}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2177
Rule 2178
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (e^8 \left (-10-20 x-5 x^2\right )+e^{5+2 x} \left (-20-20 x+10 x^2\right )+e^{2+4 x} \left (-10+15 x^2\right )\right )}{x^3 \left (1+2 x+x^2\right )} \, dx\\ &=\int \frac {e^{-x} \left (e^8 \left (-10-20 x-5 x^2\right )+e^{5+2 x} \left (-20-20 x+10 x^2\right )+e^{2+4 x} \left (-10+15 x^2\right )\right )}{x^3 (1+x)^2} \, dx\\ &=\int \left (\frac {10 e^{5+x} \left (-2-2 x+x^2\right )}{x^3 (1+x)^2}-\frac {5 e^{8-x} \left (2+4 x+x^2\right )}{x^3 (1+x)^2}+\frac {5 e^{2+3 x} \left (-2+3 x^2\right )}{x^3 (1+x)^2}\right ) \, dx\\ &=-\left (5 \int \frac {e^{8-x} \left (2+4 x+x^2\right )}{x^3 (1+x)^2} \, dx\right )+5 \int \frac {e^{2+3 x} \left (-2+3 x^2\right )}{x^3 (1+x)^2} \, dx+10 \int \frac {e^{5+x} \left (-2-2 x+x^2\right )}{x^3 (1+x)^2} \, dx\\ &=-\left (5 \int \left (\frac {2 e^{8-x}}{x^3}-\frac {e^{8-x}}{x}+\frac {e^{8-x}}{(1+x)^2}+\frac {e^{8-x}}{1+x}\right ) \, dx\right )+5 \int \left (-\frac {2 e^{2+3 x}}{x^3}+\frac {4 e^{2+3 x}}{x^2}-\frac {3 e^{2+3 x}}{x}-\frac {e^{2+3 x}}{(1+x)^2}+\frac {3 e^{2+3 x}}{1+x}\right ) \, dx+10 \int \left (-\frac {2 e^{5+x}}{x^3}+\frac {2 e^{5+x}}{x^2}-\frac {e^{5+x}}{x}-\frac {e^{5+x}}{(1+x)^2}+\frac {e^{5+x}}{1+x}\right ) \, dx\\ &=5 \int \frac {e^{8-x}}{x} \, dx-5 \int \frac {e^{8-x}}{(1+x)^2} \, dx-5 \int \frac {e^{2+3 x}}{(1+x)^2} \, dx-5 \int \frac {e^{8-x}}{1+x} \, dx-10 \int \frac {e^{8-x}}{x^3} \, dx-10 \int \frac {e^{2+3 x}}{x^3} \, dx-10 \int \frac {e^{5+x}}{x} \, dx-10 \int \frac {e^{5+x}}{(1+x)^2} \, dx+10 \int \frac {e^{5+x}}{1+x} \, dx-15 \int \frac {e^{2+3 x}}{x} \, dx+15 \int \frac {e^{2+3 x}}{1+x} \, dx-20 \int \frac {e^{5+x}}{x^3} \, dx+20 \int \frac {e^{5+x}}{x^2} \, dx+20 \int \frac {e^{2+3 x}}{x^2} \, dx\\ &=\frac {5 e^{8-x}}{x^2}+\frac {10 e^{5+x}}{x^2}+\frac {5 e^{2+3 x}}{x^2}-\frac {20 e^{5+x}}{x}-\frac {20 e^{2+3 x}}{x}+\frac {5 e^{8-x}}{1+x}+\frac {10 e^{5+x}}{1+x}+\frac {5 e^{2+3 x}}{1+x}-5 e^9 \text {Ei}(-1-x)+5 e^8 \text {Ei}(-x)-10 e^5 \text {Ei}(x)-15 e^2 \text {Ei}(3 x)+10 e^4 \text {Ei}(1+x)+\frac {15 \text {Ei}(3 (1+x))}{e}+5 \int \frac {e^{8-x}}{x^2} \, dx+5 \int \frac {e^{8-x}}{1+x} \, dx-10 \int \frac {e^{5+x}}{x^2} \, dx-10 \int \frac {e^{5+x}}{1+x} \, dx-15 \int \frac {e^{2+3 x}}{x^2} \, dx-15 \int \frac {e^{2+3 x}}{1+x} \, dx+20 \int \frac {e^{5+x}}{x} \, dx+60 \int \frac {e^{2+3 x}}{x} \, dx\\ &=\frac {5 e^{8-x}}{x^2}+\frac {10 e^{5+x}}{x^2}+\frac {5 e^{2+3 x}}{x^2}-\frac {5 e^{8-x}}{x}-\frac {10 e^{5+x}}{x}-\frac {5 e^{2+3 x}}{x}+\frac {5 e^{8-x}}{1+x}+\frac {10 e^{5+x}}{1+x}+\frac {5 e^{2+3 x}}{1+x}+5 e^8 \text {Ei}(-x)+10 e^5 \text {Ei}(x)+45 e^2 \text {Ei}(3 x)-5 \int \frac {e^{8-x}}{x} \, dx-10 \int \frac {e^{5+x}}{x} \, dx-45 \int \frac {e^{2+3 x}}{x} \, dx\\ &=\frac {5 e^{8-x}}{x^2}+\frac {10 e^{5+x}}{x^2}+\frac {5 e^{2+3 x}}{x^2}-\frac {5 e^{8-x}}{x}-\frac {10 e^{5+x}}{x}-\frac {5 e^{2+3 x}}{x}+\frac {5 e^{8-x}}{1+x}+\frac {10 e^{5+x}}{1+x}+\frac {5 e^{2+3 x}}{1+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 28, normalized size = 0.93 \begin {gather*} \frac {5 e^{2-x} \left (e^3+e^{2 x}\right )^2}{x^2 (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 32, normalized size = 1.07 \begin {gather*} \frac {5 \, {\left (e^{2} + 2 \, e^{\left (-2 \, x + 5\right )} + e^{\left (-4 \, x + 8\right )}\right )} e^{\left (3 \, x\right )}}{x^{3} + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 30, normalized size = 1.00 \begin {gather*} \frac {5 \, {\left (e^{\left (3 \, x + 2\right )} + 2 \, e^{\left (x + 5\right )} + e^{\left (-x + 8\right )}\right )}}{x^{3} + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 41, normalized size = 1.37
method | result | size |
norman | \(\frac {\left (5 \,{\mathrm e}^{8}+5 \,{\mathrm e}^{2} {\mathrm e}^{4 x}+10 \,{\mathrm e}^{4} {\mathrm e} \,{\mathrm e}^{2 x}\right ) {\mathrm e}^{-x}}{x^{2} \left (x +1\right )}\) | \(41\) |
risch | \(\frac {5 \,{\mathrm e}^{3 x +2}}{x^{2} \left (x +1\right )}+\frac {10 \,{\mathrm e}^{5+x}}{x^{2} \left (x +1\right )}+\frac {5 \,{\mathrm e}^{8-x}}{x^{2} \left (x +1\right )}\) | \(48\) |
default | \(-10 \,{\mathrm e}^{8} \left (\frac {{\mathrm e}^{-x} \left (7 x^{2}+4 x -1\right )}{2 x^{2} \left (x +1\right )}-\frac {11 \expIntegralEi \left (1, x\right )}{2}+2 \,{\mathrm e} \expIntegralEi \left (1, x +1\right )\right )-10 \,{\mathrm e}^{2} \left (-\frac {3 \expIntegralEi \left (1, -3 x \right )}{2}+\frac {{\mathrm e}^{3 x}}{2 x}+\frac {{\mathrm e}^{3 x}}{x +1}+6 \,{\mathrm e}^{-3} \expIntegralEi \left (1, -3 x -3\right )-\frac {{\mathrm e}^{3 x}}{2 x^{2}}\right )-20 \,{\mathrm e}^{8} \left (-\frac {{\mathrm e}^{-x} \left (2 x +1\right )}{\left (x +1\right ) x}+3 \expIntegralEi \left (1, x\right )-{\mathrm e} \expIntegralEi \left (1, x +1\right )\right )-5 \,{\mathrm e}^{8} \left (\frac {{\mathrm e}^{-x}}{x +1}-\expIntegralEi \left (1, x\right )\right )-20 \,{\mathrm e} \,{\mathrm e}^{4} \left (-\frac {3 \expIntegralEi \left (1, -x \right )}{2}+\frac {3 \,{\mathrm e}^{x}}{2 x}+\frac {{\mathrm e}^{x}}{x +1}+4 \,{\mathrm e}^{-1} \expIntegralEi \left (1, -x -1\right )-\frac {{\mathrm e}^{x}}{2 x^{2}}\right )+15 \,{\mathrm e}^{2} \left (-\expIntegralEi \left (1, -3 x \right )+\frac {{\mathrm e}^{3 x}}{x +1}+4 \,{\mathrm e}^{-3} \expIntegralEi \left (1, -3 x -3\right )\right )-20 \,{\mathrm e} \,{\mathrm e}^{4} \left (\expIntegralEi \left (1, -x \right )-\frac {{\mathrm e}^{x}}{x}-\frac {{\mathrm e}^{x}}{x +1}-3 \,{\mathrm e}^{-1} \expIntegralEi \left (1, -x -1\right )\right )+10 \,{\mathrm e} \,{\mathrm e}^{4} \left (-\expIntegralEi \left (1, -x \right )+\frac {{\mathrm e}^{x}}{x +1}+2 \,{\mathrm e}^{-1} \expIntegralEi \left (1, -x -1\right )\right )\) | \(316\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 30, normalized size = 1.00 \begin {gather*} \frac {5 \, {\left (e^{\left (3 \, x + 2\right )} + 2 \, e^{\left (x + 5\right )} + e^{\left (-x + 8\right )}\right )}}{x^{3} + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.84, size = 50, normalized size = 1.67 \begin {gather*} \frac {10\,{\mathrm {e}}^5\,{\mathrm {e}}^x}{x^3+x^2}+\frac {5\,{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^2}{x^3+x^2}+\frac {5\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^8}{x^3+x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.33, size = 104, normalized size = 3.47 \begin {gather*} \frac {\left (5 x^{6} e^{2} + 10 x^{5} e^{2} + 5 x^{4} e^{2}\right ) e^{3 x} + \left (10 x^{6} e^{5} + 20 x^{5} e^{5} + 10 x^{4} e^{5}\right ) e^{x} + \left (5 x^{6} e^{8} + 10 x^{5} e^{8} + 5 x^{4} e^{8}\right ) e^{- x}}{x^{9} + 3 x^{8} + 3 x^{7} + x^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________