Optimal. Leaf size=35 \[ \log ^2(3) \log ^2\left (\frac {\left (e^{x \left (-x^3+\frac {2+x}{x}\right )}-x\right )^2}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 2.34, antiderivative size = 41, normalized size of antiderivative = 1.17, number of steps used = 1, number of rules used = 2, integrand size = 88, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6742, 6686} \begin {gather*} \log ^2(3) \log ^2\left (\frac {-2 e^{-x^4+x+2} x+e^{-2 x^4+2 x+4}+x^2}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6686
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log ^2(3) \log ^2\left (\frac {e^{4+2 x-2 x^4}-2 e^{2+x-x^4} x+x^2}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.51, size = 35, normalized size = 1.00 \begin {gather*} \log ^2(3) \log ^2\left (\frac {e^{-2 x^4} \left (e^{2+x}-e^{x^4} x\right )^2}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 39, normalized size = 1.11 \begin {gather*} \log \relax (3)^{2} \log \left (\frac {x^{2} - 2 \, x e^{\left (-x^{4} + x + 2\right )} + e^{\left (-2 \, x^{4} + 2 \, x + 4\right )}}{x}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left (8 \, x^{4} - 2 \, x + 1\right )} e^{\left (-x^{4} + x + 2\right )} \log \relax (3)^{2} + x \log \relax (3)^{2}\right )} \log \left (\frac {x^{2} - 2 \, x e^{\left (-x^{4} + x + 2\right )} + e^{\left (-2 \, x^{4} + 2 \, x + 4\right )}}{x}\right )}{x^{2} - x e^{\left (-x^{4} + x + 2\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.51, size = 40, normalized size = 1.14
method | result | size |
norman | \(\ln \relax (3)^{2} \ln \left (\frac {{\mathrm e}^{-2 x^{4}+2 x +4}-2 x \,{\mathrm e}^{-x^{4}+x +2}+x^{2}}{x}\right )^{2}\) | \(40\) |
risch | \(-32 \ln \relax (3)^{2}+4 i \pi \ln \relax (3)^{2} \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )^{3}+4 i \pi \ln \relax (3)^{2} \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right )^{3}+\left (-4 \ln \relax (3)^{2} \ln \relax (x )-16 \ln \relax (3)^{2}\right ) \ln \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )+\ln \relax (3)^{2} \ln \relax (x )^{2}+16 \ln \relax (3)^{2} \ln \left ({\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}-x \right )+4 \ln \relax (3)^{2} \ln \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}-2 i \pi \ln \relax (3)^{2} \ln \left ({\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}-x \right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )+i \ln \relax (x ) \pi \ln \relax (3)^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )+2 i \pi \ln \relax (3)^{2} \ln \left ({\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}-x \right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )^{2}-2 i \pi \ln \relax (3)^{2} \ln \left ({\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}-x \right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )\right )^{2} \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right )+i \ln \relax (x ) \pi \ln \relax (3)^{2} \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )\right )^{2} \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right )-i \ln \relax (x ) \pi \ln \relax (3)^{2} \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )^{2}-4 i \pi \ln \relax (3)^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )^{2}+4 i \pi \ln \relax (3)^{2} \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )\right )^{2} \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right )-8 i \pi \ln \relax (3)^{2} \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )\right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right )^{2}-4 i \pi \ln \relax (3)^{2} \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )^{2}-2 i \pi \ln \relax (3)^{2} \ln \left ({\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}-x \right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right )^{3}-i \ln \relax (x ) \pi \ln \relax (3)^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )^{2}-2 i \ln \relax (x ) \pi \ln \relax (3)^{2} \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )\right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right )^{2}+4 i \pi \ln \relax (3)^{2} \ln \left ({\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}-x \right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )\right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right )^{2}+2 i \pi \ln \relax (3)^{2} \ln \left ({\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}-x \right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )^{2}+4 i \pi \ln \relax (3)^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )-2 i \pi \ln \relax (3)^{2} \ln \left ({\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}-x \right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )^{3}+i \ln \relax (x ) \pi \ln \relax (3)^{2} \mathrm {csgn}\left (i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}\right )^{3}+i \ln \relax (x ) \pi \ln \relax (3)^{2} \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{-\left (x +1\right ) \left (x^{3}-x^{2}+x -2\right )}+x \right )^{2}}{x}\right )^{3}\) | \(1442\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, \int \frac {{\left ({\left (8 \, x^{4} - 2 \, x + 1\right )} e^{\left (-x^{4} + x + 2\right )} \log \relax (3)^{2} + x \log \relax (3)^{2}\right )} \log \left (\frac {x^{2} - 2 \, x e^{\left (-x^{4} + x + 2\right )} + e^{\left (-2 \, x^{4} + 2 \, x + 4\right )}}{x}\right )}{x^{2} - x e^{\left (-x^{4} + x + 2\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.79, size = 38, normalized size = 1.09 \begin {gather*} {\ln \relax (3)}^2\,{\ln \left (x-2\,{\mathrm {e}}^2\,{\mathrm {e}}^{-x^4}\,{\mathrm {e}}^x+\frac {{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^4\,{\mathrm {e}}^{-2\,x^4}}{x}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.58, size = 36, normalized size = 1.03 \begin {gather*} \log {\relax (3 )}^{2} \log {\left (\frac {x^{2} - 2 x e^{- x^{4} + x + 2} + e^{- 2 x^{4} + 2 x + 4}}{x} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________