Optimal. Leaf size=12 \[ \left (3-e^x+x^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.05, antiderivative size = 27, normalized size of antiderivative = 2.25, number of steps used = 10, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2194, 2196, 2176} \begin {gather*} x^4-2 e^x x^2+6 x^2-6 e^x+e^{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=6 x^2+x^4+2 \int e^{2 x} \, dx+\int e^x \left (-6-4 x-2 x^2\right ) \, dx\\ &=e^{2 x}+6 x^2+x^4+\int \left (-6 e^x-4 e^x x-2 e^x x^2\right ) \, dx\\ &=e^{2 x}+6 x^2+x^4-2 \int e^x x^2 \, dx-4 \int e^x x \, dx-6 \int e^x \, dx\\ &=-6 e^x+e^{2 x}-4 e^x x+6 x^2-2 e^x x^2+x^4+4 \int e^x \, dx+4 \int e^x x \, dx\\ &=-2 e^x+e^{2 x}+6 x^2-2 e^x x^2+x^4-4 \int e^x \, dx\\ &=-6 e^x+e^{2 x}+6 x^2-2 e^x x^2+x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.01, size = 34, normalized size = 2.83 \begin {gather*} 2 \left (\frac {e^{2 x}}{2}+3 x^2+\frac {x^4}{2}-e^x \left (3+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 22, normalized size = 1.83 \begin {gather*} x^{4} + 6 \, x^{2} - 2 \, {\left (x^{2} + 3\right )} e^{x} + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 22, normalized size = 1.83 \begin {gather*} x^{4} + 6 \, x^{2} - 2 \, {\left (x^{2} + 3\right )} e^{x} + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.03, size = 25, normalized size = 2.08
method | result | size |
default | \(-2 \,{\mathrm e}^{x} x^{2}-6 \,{\mathrm e}^{x}+6 x^{2}+x^{4}+{\mathrm e}^{2 x}\) | \(25\) |
norman | \(-2 \,{\mathrm e}^{x} x^{2}-6 \,{\mathrm e}^{x}+6 x^{2}+x^{4}+{\mathrm e}^{2 x}\) | \(25\) |
risch | \(-2 \,{\mathrm e}^{x} x^{2}-6 \,{\mathrm e}^{x}+6 x^{2}+x^{4}+{\mathrm e}^{2 x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 22, normalized size = 1.83 \begin {gather*} x^{4} + 6 \, x^{2} - 2 \, {\left (x^{2} + 3\right )} e^{x} + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 24, normalized size = 2.00 \begin {gather*} {\mathrm {e}}^{2\,x}-6\,{\mathrm {e}}^x-2\,x^2\,{\mathrm {e}}^x+6\,x^2+x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.10, size = 24, normalized size = 2.00 \begin {gather*} x^{4} + 6 x^{2} + \left (- 2 x^{2} - 6\right ) e^{x} + e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________