Optimal. Leaf size=26 \[ e^{\frac {x^4 \log ^2\left (-e+x-\log \left (2 x^2\right )\right )}{\log ^2(2)}} \]
________________________________________________________________________________________
Rubi [A] time = 1.12, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 118, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used = {6688, 12, 6706} \begin {gather*} e^{\frac {x^4 \log ^2\left (-\log \left (2 x^2\right )+x-e\right )}{\log ^2(2)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{\frac {x^4 \log ^2\left (-e+x-\log \left (2 x^2\right )\right )}{\log ^2(2)}} x^3 \log \left (-e+x-\log \left (2 x^2\right )\right ) \left (2-x+2 \left (e-x+\log \left (2 x^2\right )\right ) \log \left (-e+x-\log \left (2 x^2\right )\right )\right )}{\log ^2(2) \left (e-x+\log \left (2 x^2\right )\right )} \, dx\\ &=\frac {2 \int \frac {e^{\frac {x^4 \log ^2\left (-e+x-\log \left (2 x^2\right )\right )}{\log ^2(2)}} x^3 \log \left (-e+x-\log \left (2 x^2\right )\right ) \left (2-x+2 \left (e-x+\log \left (2 x^2\right )\right ) \log \left (-e+x-\log \left (2 x^2\right )\right )\right )}{e-x+\log \left (2 x^2\right )} \, dx}{\log ^2(2)}\\ &=e^{\frac {x^4 \log ^2\left (-e+x-\log \left (2 x^2\right )\right )}{\log ^2(2)}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 26, normalized size = 1.00 \begin {gather*} e^{\frac {x^4 \log ^2\left (-e+x-\log \left (2 x^2\right )\right )}{\log ^2(2)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 26, normalized size = 1.00 \begin {gather*} e^{\left (\frac {x^{4} \log \left (x - e - \log \left (2 \, x^{2}\right )\right )^{2}}{\log \relax (2)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.50, size = 26, normalized size = 1.00 \begin {gather*} e^{\left (\frac {x^{4} \log \left (x - e - \log \left (2 \, x^{2}\right )\right )^{2}}{\log \relax (2)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.10, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (4 x^{3} \ln \left (2 x^{2}\right )+4 x^{3} {\mathrm e}-4 x^{4}\right ) \ln \left (-\ln \left (2 x^{2}\right )+x -{\mathrm e}\right )^{2}+\left (-2 x^{4}+4 x^{3}\right ) \ln \left (-\ln \left (2 x^{2}\right )+x -{\mathrm e}\right )\right ) {\mathrm e}^{\frac {x^{4} \ln \left (-\ln \left (2 x^{2}\right )+x -{\mathrm e}\right )^{2}}{\ln \relax (2)^{2}}}}{\ln \relax (2)^{2} \ln \left (2 x^{2}\right )+\left ({\mathrm e}-x \right ) \ln \relax (2)^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 26, normalized size = 1.00 \begin {gather*} e^{\left (\frac {x^{4} \log \left (x - e - \log \relax (2) - 2 \, \log \relax (x)\right )^{2}}{\log \relax (2)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.69, size = 28, normalized size = 1.08 \begin {gather*} {\mathrm {e}}^{\frac {x^4\,{\ln \left (x-\ln \left (x^2\right )-\mathrm {e}-\ln \relax (2)\right )}^2}{{\ln \relax (2)}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.72, size = 24, normalized size = 0.92 \begin {gather*} e^{\frac {x^{4} \log {\left (x - \log {\left (2 x^{2} \right )} - e \right )}^{2}}{\log {\relax (2 )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________