Optimal. Leaf size=30 \[ x \left (\frac {2}{3}+\frac {2 e^x x^2}{\log (x)-\frac {\log (4) (x+\log (x))}{x}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 9.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x^2 \log ^2(4)+e^x \left (-6 x^4+\left (6 x^3-18 x^4-6 x^5\right ) \log (4)\right )+\left (-4 x^2 \log (4)+4 x \log ^2(4)+e^x \left (18 x^4+6 x^5+\left (-24 x^3-6 x^4\right ) \log (4)\right )\right ) \log (x)+\left (2 x^2-4 x \log (4)+2 \log ^2(4)\right ) \log ^2(x)}{3 x^2 \log ^2(4)+\left (-6 x^2 \log (4)+6 x \log ^2(4)\right ) \log (x)+\left (3 x^2-6 x \log (4)+3 \log ^2(4)\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (x^2 \left (\log ^2(4)-3 e^x x \left (x-\log (4)+x^2 \log (4)+x \log (64)\right )\right )+x \left (2 \log (4) (-x+\log (4))+3 e^x x^2 \left (3 x+x^2-4 \log (4)-x \log (4)\right )\right ) \log (x)+(x-\log (4))^2 \log ^2(x)\right )}{3 (x \log (4)+(-x+\log (4)) \log (x))^2} \, dx\\ &=\frac {2}{3} \int \frac {x^2 \left (\log ^2(4)-3 e^x x \left (x-\log (4)+x^2 \log (4)+x \log (64)\right )\right )+x \left (2 \log (4) (-x+\log (4))+3 e^x x^2 \left (3 x+x^2-4 \log (4)-x \log (4)\right )\right ) \log (x)+(x-\log (4))^2 \log ^2(x)}{(x \log (4)+(-x+\log (4)) \log (x))^2} \, dx\\ &=\frac {2}{3} \int \left (1+\frac {3 e^x x^3 \left (\log (4)-x^2 \log (4)-x (1+\log (64))+x^2 \log (x)+3 x \left (1-\frac {2 \log (2)}{3}\right ) \log (x)-\log (256) \log (x)\right )}{(x \log (4)-x \log (x)+\log (4) \log (x))^2}\right ) \, dx\\ &=\frac {2 x}{3}+2 \int \frac {e^x x^3 \left (\log (4)-x^2 \log (4)-x (1+\log (64))+x^2 \log (x)+3 x \left (1-\frac {2 \log (2)}{3}\right ) \log (x)-\log (256) \log (x)\right )}{(x \log (4)-x \log (x)+\log (4) \log (x))^2} \, dx\\ &=\frac {2 x}{3}+2 \int \left (\frac {e^x x^3 \left (-x^2-\log ^2(4)-x \left (\log ^2(4)-\log (16)\right )\right )}{(x-\log (4)) (x \log (4)-x \log (x)+\log (4) \log (x))^2}+\frac {e^x x^3 \left (-x^2-x (3-\log (4))+\log (256)\right )}{(x-\log (4)) (x \log (4)-x \log (x)+\log (4) \log (x))}\right ) \, dx\\ &=\frac {2 x}{3}+2 \int \frac {e^x x^3 \left (-x^2-\log ^2(4)-x \left (\log ^2(4)-\log (16)\right )\right )}{(x-\log (4)) (x \log (4)-x \log (x)+\log (4) \log (x))^2} \, dx+2 \int \frac {e^x x^3 \left (-x^2-x (3-\log (4))+\log (256)\right )}{(x-\log (4)) (x \log (4)-x \log (x)+\log (4) \log (x))} \, dx\\ &=\frac {2 x}{3}+2 \int \left (-\frac {e^x x^4}{(x \log (4)-x \log (x)+\log (4) \log (x))^2}-\frac {e^x x^3 (-1+\log (4)) \log (4)}{(x \log (4)-x \log (x)+\log (4) \log (x))^2}-\frac {e^x x^2 \log ^3(4)}{(x \log (4)-x \log (x)+\log (4) \log (x))^2}-\frac {e^x x \log ^4(4)}{(x \log (4)-x \log (x)+\log (4) \log (x))^2}-\frac {e^x \log ^5(4)}{(x \log (4)-x \log (x)+\log (4) \log (x))^2}-\frac {e^x \log ^6(4)}{(x-\log (4)) (x \log (4)-x \log (x)+\log (4) \log (x))^2}\right ) \, dx+2 \int \left (-\frac {3 e^x x^3}{x \log (4)-x \log (x)+\log (4) \log (x)}-\frac {e^x x^4}{x \log (4)-x \log (x)+\log (4) \log (x)}+\frac {e^x x^2 \log (4)}{x \log (4)-x \log (x)+\log (4) \log (x)}+\frac {e^x x \log ^2(4)}{x \log (4)-x \log (x)+\log (4) \log (x)}+\frac {e^x \log ^3(4)}{x \log (4)-x \log (x)+\log (4) \log (x)}+\frac {e^x \log ^4(4)}{(x-\log (4)) (x \log (4)-x \log (x)+\log (4) \log (x))}\right ) \, dx\\ &=\frac {2 x}{3}-2 \int \frac {e^x x^4}{(x \log (4)-x \log (x)+\log (4) \log (x))^2} \, dx-2 \int \frac {e^x x^4}{x \log (4)-x \log (x)+\log (4) \log (x)} \, dx-6 \int \frac {e^x x^3}{x \log (4)-x \log (x)+\log (4) \log (x)} \, dx+(2 \log (4)) \int \frac {e^x x^2}{x \log (4)-x \log (x)+\log (4) \log (x)} \, dx+(2 (1-\log (4)) \log (4)) \int \frac {e^x x^3}{(x \log (4)-x \log (x)+\log (4) \log (x))^2} \, dx+\left (2 \log ^2(4)\right ) \int \frac {e^x x}{x \log (4)-x \log (x)+\log (4) \log (x)} \, dx-\left (2 \log ^3(4)\right ) \int \frac {e^x x^2}{(x \log (4)-x \log (x)+\log (4) \log (x))^2} \, dx+\left (2 \log ^3(4)\right ) \int \frac {e^x}{x \log (4)-x \log (x)+\log (4) \log (x)} \, dx-\left (2 \log ^4(4)\right ) \int \frac {e^x x}{(x \log (4)-x \log (x)+\log (4) \log (x))^2} \, dx+\left (2 \log ^4(4)\right ) \int \frac {e^x}{(x-\log (4)) (x \log (4)-x \log (x)+\log (4) \log (x))} \, dx-\left (2 \log ^5(4)\right ) \int \frac {e^x}{(x \log (4)-x \log (x)+\log (4) \log (x))^2} \, dx-\left (2 \log ^6(4)\right ) \int \frac {e^x}{(x-\log (4)) (x \log (4)-x \log (x)+\log (4) \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.28, size = 75, normalized size = 2.50 \begin {gather*} \frac {2}{3} \left (x-\frac {3 e^x x^4 \left (x^2+\log ^2(4)+x \left (4 \log ^2(4)-\log (16)-\log (4) \log (64)\right )\right )}{\left (x^2+x (-2+\log (4)) \log (4)+\log ^2(4)\right ) (x \log (4)+(-x+\log (4)) \log (x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 47, normalized size = 1.57 \begin {gather*} -\frac {2 \, {\left (3 \, x^{4} e^{x} - 2 \, x^{2} \log \relax (2) + {\left (x^{2} - 2 \, x \log \relax (2)\right )} \log \relax (x)\right )}}{3 \, {\left (2 \, x \log \relax (2) - {\left (x - 2 \, \log \relax (2)\right )} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 49, normalized size = 1.63 \begin {gather*} -\frac {2 \, {\left (3 \, x^{4} e^{x} - 2 \, x^{2} \log \relax (2) + x^{2} \log \relax (x) - 2 \, x \log \relax (2) \log \relax (x)\right )}}{3 \, {\left (2 \, x \log \relax (2) - x \log \relax (x) + 2 \, \log \relax (2) \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 31, normalized size = 1.03
method | result | size |
risch | \(\frac {2 x}{3}-\frac {2 x^{4} {\mathrm e}^{x}}{2 \ln \relax (2) \ln \relax (x )-x \ln \relax (x )+2 x \ln \relax (2)}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 47, normalized size = 1.57 \begin {gather*} -\frac {2 \, {\left (3 \, x^{4} e^{x} - 2 \, x^{2} \log \relax (2) + {\left (x^{2} - 2 \, x \log \relax (2)\right )} \log \relax (x)\right )}}{3 \, {\left (2 \, x \log \relax (2) - {\left (x - 2 \, \log \relax (2)\right )} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {8\,x^2\,{\ln \relax (2)}^2+\ln \relax (x)\,\left ({\mathrm {e}}^x\,\left (18\,x^4-2\,\ln \relax (2)\,\left (6\,x^4+24\,x^3\right )+6\,x^5\right )+16\,x\,{\ln \relax (2)}^2-8\,x^2\,\ln \relax (2)\right )-{\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,\left (6\,x^5+18\,x^4-6\,x^3\right )+6\,x^4\right )+{\ln \relax (x)}^2\,\left (2\,x^2-8\,\ln \relax (2)\,x+8\,{\ln \relax (2)}^2\right )}{12\,x^2\,{\ln \relax (2)}^2+{\ln \relax (x)}^2\,\left (3\,x^2-12\,\ln \relax (2)\,x+12\,{\ln \relax (2)}^2\right )+\ln \relax (x)\,\left (24\,x\,{\ln \relax (2)}^2-12\,x^2\,\ln \relax (2)\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 32, normalized size = 1.07 \begin {gather*} \frac {2 x^{4} e^{x}}{x \log {\relax (x )} - 2 x \log {\relax (2 )} - 2 \log {\relax (2 )} \log {\relax (x )}} + \frac {2 x}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________