Optimal. Leaf size=26 \[ e^{3+\frac {5}{-\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}+x}} \]
________________________________________________________________________________________
Rubi [F] time = 92.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right ) \left (1280 x-5 x^2+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )} \left (20 x \log ^2\left (x^2\right )+(-10240+40 x) \log \left (x^2\right ) \log \left (65536-512 x+x^2\right )\right )\right )}{-256 x^3+x^4+\left (65536-512 x+x^2\right )^{4 \log ^2\left (x^2\right )} \left (-256 x+x^2\right )+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )} \left (512 x^2-2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right ) \left (-1280 x+5 x^2-\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )} \left (20 x \log ^2\left (x^2\right )+(-10240+40 x) \log \left (x^2\right ) \log \left (65536-512 x+x^2\right )\right )\right )}{(256-x) \left (\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x\right )^2 x} \, dx\\ &=\int \left (-\frac {5 \exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right )}{\left (\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x\right )^2}+\frac {20 \exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right ) \left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )} \log \left (x^2\right ) \left (-512 \log \left ((-256+x)^2\right )+2 x \log \left ((-256+x)^2\right )+x \log \left (x^2\right )\right )}{\left (\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x\right )^2 (-256+x) x}\right ) \, dx\\ &=-\left (5 \int \frac {\exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right )}{\left (\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x\right )^2} \, dx\right )+20 \int \frac {\exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right ) \left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )} \log \left (x^2\right ) \left (-512 \log \left ((-256+x)^2\right )+2 x \log \left ((-256+x)^2\right )+x \log \left (x^2\right )\right )}{\left (\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x\right )^2 (-256+x) x} \, dx\\ &=-\left (5 \int \frac {\exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right )}{\left (\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x\right )^2} \, dx\right )+20 \int \left (\frac {\exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right ) \left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )} \log \left (x^2\right ) \left (-512 \log \left ((-256+x)^2\right )+2 x \log \left ((-256+x)^2\right )+x \log \left (x^2\right )\right )}{256 \left (\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x\right )^2 (-256+x)}-\frac {\exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right ) \left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )} \log \left (x^2\right ) \left (-512 \log \left ((-256+x)^2\right )+2 x \log \left ((-256+x)^2\right )+x \log \left (x^2\right )\right )}{256 \left (\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x\right )^2 x}\right ) \, dx\\ &=\frac {5}{64} \int \frac {\exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right ) \left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )} \log \left (x^2\right ) \left (-512 \log \left ((-256+x)^2\right )+2 x \log \left ((-256+x)^2\right )+x \log \left (x^2\right )\right )}{\left (\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x\right )^2 (-256+x)} \, dx-\frac {5}{64} \int \frac {\exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right ) \left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )} \log \left (x^2\right ) \left (-512 \log \left ((-256+x)^2\right )+2 x \log \left ((-256+x)^2\right )+x \log \left (x^2\right )\right )}{\left (\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x\right )^2 x} \, dx-5 \int \frac {\exp \left (\frac {-5-3 x+3 \left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}{-x+\left (65536-512 x+x^2\right )^{2 \log ^2\left (x^2\right )}}\right )}{\left (\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 26, normalized size = 1.00 \begin {gather*} e^{3-\frac {5}{\left ((-256+x)^2\right )^{2 \log ^2\left (x^2\right )}-x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 49, normalized size = 1.88 \begin {gather*} e^{\left (\frac {3 \, {\left (x^{2} - 512 \, x + 65536\right )}^{2 \, \log \left (x^{2}\right )^{2}} - 3 \, x - 5}{{\left (x^{2} - 512 \, x + 65536\right )}^{2 \, \log \left (x^{2}\right )^{2}} - x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {5 \, {\left (4 \, {\left (2 \, {\left (x - 256\right )} \log \left (x^{2} - 512 \, x + 65536\right ) \log \left (x^{2}\right ) + x \log \left (x^{2}\right )^{2}\right )} {\left (x^{2} - 512 \, x + 65536\right )}^{2 \, \log \left (x^{2}\right )^{2}} - x^{2} + 256 \, x\right )} e^{\left (\frac {3 \, {\left (x^{2} - 512 \, x + 65536\right )}^{2 \, \log \left (x^{2}\right )^{2}} - 3 \, x - 5}{{\left (x^{2} - 512 \, x + 65536\right )}^{2 \, \log \left (x^{2}\right )^{2}} - x}\right )}}{x^{4} - 256 \, x^{3} + {\left (x^{2} - 256 \, x\right )} {\left (x^{2} - 512 \, x + 65536\right )}^{4 \, \log \left (x^{2}\right )^{2}} - 2 \, {\left (x^{3} - 256 \, x^{2}\right )} {\left (x^{2} - 512 \, x + 65536\right )}^{2 \, \log \left (x^{2}\right )^{2}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.89, size = 266, normalized size = 10.23
method | result | size |
risch | \({\mathrm e}^{\frac {-3 \,{\mathrm e}^{-\frac {\left (i \pi \mathrm {csgn}\left (i \left (x -256\right )^{2}\right )^{3}-2 i \pi \mathrm {csgn}\left (i \left (x -256\right )^{2}\right )^{2} \mathrm {csgn}\left (i \left (x -256\right )\right )+i \pi \,\mathrm {csgn}\left (i \left (x -256\right )^{2}\right ) \mathrm {csgn}\left (i \left (x -256\right )\right )^{2}-4 \ln \left (x -256\right )\right ) \left (-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 \ln \relax (x )\right )^{2}}{4}}+3 x +5}{-{\mathrm e}^{-\frac {\left (i \pi \mathrm {csgn}\left (i \left (x -256\right )^{2}\right )^{3}-2 i \pi \mathrm {csgn}\left (i \left (x -256\right )^{2}\right )^{2} \mathrm {csgn}\left (i \left (x -256\right )\right )+i \pi \,\mathrm {csgn}\left (i \left (x -256\right )^{2}\right ) \mathrm {csgn}\left (i \left (x -256\right )\right )^{2}-4 \ln \left (x -256\right )\right ) \left (-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 \ln \relax (x )\right )^{2}}{4}}+x}}\) | \(266\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 21, normalized size = 0.81 \begin {gather*} e^{\left (-\frac {5}{{\left (x - 256\right )}^{16 \, \log \relax (x)^{2}} - x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.41, size = 97, normalized size = 3.73 \begin {gather*} {\mathrm {e}}^{-\frac {3\,{\left (x^2-512\,x+65536\right )}^{2\,{\ln \left (x^2\right )}^2}}{x-{\left (x^2-512\,x+65536\right )}^{2\,{\ln \left (x^2\right )}^2}}}\,{\mathrm {e}}^{\frac {3\,x}{x-{\left (x^2-512\,x+65536\right )}^{2\,{\ln \left (x^2\right )}^2}}}\,{\mathrm {e}}^{\frac {5}{x-{\left (x^2-512\,x+65536\right )}^{2\,{\ln \left (x^2\right )}^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________