Optimal. Leaf size=28 \[ -5+x-x^2+\frac {1}{5} e^3 \left (-e^{(1-x)^2}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 30, normalized size of antiderivative = 1.07, number of steps used = 3, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {12, 2236} \begin {gather*} -x^2-\frac {1}{5} e^{x^2-2 x+4}+\frac {1}{5} \left (5+e^3\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2236
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (5+e^3+e^{4-2 x+x^2} (2-2 x)-10 x\right ) \, dx\\ &=\frac {1}{5} \left (5+e^3\right ) x-x^2+\frac {1}{5} \int e^{4-2 x+x^2} (2-2 x) \, dx\\ &=-\frac {1}{5} e^{4-2 x+x^2}+\frac {1}{5} \left (5+e^3\right ) x-x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 30, normalized size = 1.07 \begin {gather*} \frac {1}{5} \left (-e^{4-2 x+x^2}+5 x+e^3 x-5 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 23, normalized size = 0.82 \begin {gather*} -x^{2} + \frac {1}{5} \, x e^{3} + x - \frac {1}{5} \, e^{\left (x^{2} - 2 \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 23, normalized size = 0.82 \begin {gather*} -x^{2} + \frac {1}{5} \, x e^{3} + x - \frac {1}{5} \, e^{\left (x^{2} - 2 \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 0.86
method | result | size |
risch | \(-x^{2}+x -\frac {{\mathrm e}^{x^{2}-2 x +4}}{5}+\frac {x \,{\mathrm e}^{3}}{5}\) | \(24\) |
default | \(-x^{2}+x -\frac {{\mathrm e}^{3} {\mathrm e}^{x^{2}-2 x +1}}{5}+\frac {x \,{\mathrm e}^{3}}{5}\) | \(26\) |
norman | \(\left (\frac {{\mathrm e}^{3}}{5}+1\right ) x -x^{2}-\frac {{\mathrm e}^{3} {\mathrm e}^{x^{2}-2 x +1}}{5}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 23, normalized size = 0.82 \begin {gather*} -x^{2} + \frac {1}{5} \, x e^{3} + x - \frac {1}{5} \, e^{\left (x^{2} - 2 \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.80, size = 25, normalized size = 0.89 \begin {gather*} x\,\left (\frac {{\mathrm {e}}^3}{5}+1\right )-x^2-\frac {{\mathrm {e}}^{x^2-2\,x+4}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 26, normalized size = 0.93 \begin {gather*} - x^{2} + x \left (1 + \frac {e^{3}}{5}\right ) - \frac {e^{3} e^{x^{2} - 2 x + 1}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________