Optimal. Leaf size=20 \[ 2-e^{4 e^{1+\log ^2(5)} x} x^4 \]
________________________________________________________________________________________
Rubi [A] time = 0.40, antiderivative size = 18, normalized size of antiderivative = 0.90, number of steps used = 12, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {1593, 2196, 2176, 2194} \begin {gather*} x^4 \left (-e^{4 x e^{1+\log ^2(5)}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{4 e^{1+\log ^2(5)} x} x^3 \left (-4-4 e^{1+\log ^2(5)} x\right ) \, dx\\ &=\int \left (-4 e^{4 e^{1+\log ^2(5)} x} x^3-4 e^{1+4 e^{1+\log ^2(5)} x+\log ^2(5)} x^4\right ) \, dx\\ &=-\left (4 \int e^{4 e^{1+\log ^2(5)} x} x^3 \, dx\right )-4 \int e^{1+4 e^{1+\log ^2(5)} x+\log ^2(5)} x^4 \, dx\\ &=-e^{-1+4 e^{1+\log ^2(5)} x-\log ^2(5)} x^3-e^{4 e^{1+\log ^2(5)} x} x^4+\left (3 e^{-1-\log ^2(5)}\right ) \int e^{4 e^{1+\log ^2(5)} x} x^2 \, dx+\left (4 e^{-1-\log ^2(5)}\right ) \int e^{1+4 e^{1+\log ^2(5)} x+\log ^2(5)} x^3 \, dx\\ &=\frac {3}{4} e^{4 e^{1+\log ^2(5)} x-2 \left (1+\log ^2(5)\right )} x^2-e^{4 e^{1+\log ^2(5)} x} x^4-\frac {1}{2} \left (3 e^{-2 \left (1+\log ^2(5)\right )}\right ) \int e^{4 e^{1+\log ^2(5)} x} x \, dx-\left (3 e^{-2 \left (1+\log ^2(5)\right )}\right ) \int e^{1+4 e^{1+\log ^2(5)} x+\log ^2(5)} x^2 \, dx\\ &=-\frac {3}{8} e^{4 e^{1+\log ^2(5)} x-3 \left (1+\log ^2(5)\right )} x-e^{4 e^{1+\log ^2(5)} x} x^4+\frac {1}{8} \left (3 e^{-3 \left (1+\log ^2(5)\right )}\right ) \int e^{4 e^{1+\log ^2(5)} x} \, dx+\frac {1}{2} \left (3 e^{-3 \left (1+\log ^2(5)\right )}\right ) \int e^{1+4 e^{1+\log ^2(5)} x+\log ^2(5)} x \, dx\\ &=\frac {3}{32} e^{4 e^{1+\log ^2(5)} x-4 \left (1+\log ^2(5)\right )}-e^{4 e^{1+\log ^2(5)} x} x^4-\frac {1}{8} \left (3 e^{-4 \left (1+\log ^2(5)\right )}\right ) \int e^{1+4 e^{1+\log ^2(5)} x+\log ^2(5)} \, dx\\ &=-e^{4 e^{1+\log ^2(5)} x} x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 18, normalized size = 0.90 \begin {gather*} -e^{4 e^{1+\log ^2(5)} x} x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 16, normalized size = 0.80 \begin {gather*} -x^{4} e^{\left (4 \, x e^{\left (\log \relax (5)^{2} + 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 137, normalized size = 6.85 \begin {gather*} -\frac {1}{32} \, {\left (32 \, x^{4} e^{\left (4 \, \log \relax (5)^{2} + 4\right )} - 32 \, x^{3} e^{\left (3 \, \log \relax (5)^{2} + 3\right )} + 24 \, x^{2} e^{\left (2 \, \log \relax (5)^{2} + 2\right )} - 12 \, x e^{\left (\log \relax (5)^{2} + 1\right )} + 3\right )} e^{\left (4 \, x e^{\left (\log \relax (5)^{2} + 1\right )} - 4 \, \log \relax (5)^{2} - 4\right )} - \frac {1}{32} \, {\left (32 \, x^{3} e^{\left (3 \, \log \relax (5)^{2} + 3\right )} - 24 \, x^{2} e^{\left (2 \, \log \relax (5)^{2} + 2\right )} + 12 \, x e^{\left (\log \relax (5)^{2} + 1\right )} - 3\right )} e^{\left (4 \, x e^{\left (\log \relax (5)^{2} + 1\right )} - 4 \, \log \relax (5)^{2} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 17, normalized size = 0.85
method | result | size |
risch | \(-{\mathrm e}^{4 x \,{\mathrm e}^{1+\ln \relax (5)^{2}}} x^{4}\) | \(17\) |
gosper | \(-{\mathrm e}^{4 x \,{\mathrm e}^{1+\ln \relax (5)^{2}}} x^{4}\) | \(18\) |
derivativedivides | \(-{\mathrm e}^{4 x \,{\mathrm e}^{1+\ln \relax (5)^{2}}} x^{4}\) | \(18\) |
default | \(-{\mathrm e}^{4 x \,{\mathrm e}^{1+\ln \relax (5)^{2}}} x^{4}\) | \(18\) |
norman | \(-{\mathrm e}^{4 x \,{\mathrm e}^{1+\ln \relax (5)^{2}}} x^{4}\) | \(18\) |
meijerg | \(\frac {{\mathrm e}^{-4-4 \ln \relax (5)^{2}} \left (24-\frac {{\mathrm e}^{4 x \,{\mathrm e}^{1+\ln \relax (5)^{2}}} \left (1280 x^{4} {\mathrm e}^{4+4 \ln \relax (5)^{2}}-1280 x^{3} {\mathrm e}^{3+3 \ln \relax (5)^{2}}+960 x^{2} {\mathrm e}^{2+2 \ln \relax (5)^{2}}-480 x \,{\mathrm e}^{1+\ln \relax (5)^{2}}+120\right )}{5}\right )}{256}-\frac {{\mathrm e}^{-4-4 \ln \relax (5)^{2}} \left (6-\frac {{\mathrm e}^{4 x \,{\mathrm e}^{1+\ln \relax (5)^{2}}} \left (-256 x^{3} {\mathrm e}^{3+3 \ln \relax (5)^{2}}+192 x^{2} {\mathrm e}^{2+2 \ln \relax (5)^{2}}-96 x \,{\mathrm e}^{1+\ln \relax (5)^{2}}+24\right )}{4}\right )}{64}\) | \(148\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 137, normalized size = 6.85 \begin {gather*} -\frac {1}{32} \, {\left (32 \, x^{4} e^{\left (4 \, \log \relax (5)^{2} + 4\right )} - 32 \, x^{3} e^{\left (3 \, \log \relax (5)^{2} + 3\right )} + 24 \, x^{2} e^{\left (2 \, \log \relax (5)^{2} + 2\right )} - 12 \, x e^{\left (\log \relax (5)^{2} + 1\right )} + 3\right )} e^{\left (4 \, x e^{\left (\log \relax (5)^{2} + 1\right )} - 4 \, \log \relax (5)^{2} - 4\right )} - \frac {1}{32} \, {\left (32 \, x^{3} e^{\left (3 \, \log \relax (5)^{2} + 3\right )} - 24 \, x^{2} e^{\left (2 \, \log \relax (5)^{2} + 2\right )} + 12 \, x e^{\left (\log \relax (5)^{2} + 1\right )} - 3\right )} e^{\left (4 \, x e^{\left (\log \relax (5)^{2} + 1\right )} - 4 \, \log \relax (5)^{2} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 16, normalized size = 0.80 \begin {gather*} -x^4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{{\ln \relax (5)}^2}\,\mathrm {e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 0.95 \begin {gather*} - x^{4} e^{4 e x e^{\log {\relax (5 )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________