Optimal. Leaf size=23 \[ e^{\frac {1}{8} e^{-e^{(-4-x)^2-x}}} \]
________________________________________________________________________________________
Rubi [F] time = 0.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{8} \exp \left (16+\frac {1}{8} e^{-e^{16+7 x+x^2}}-e^{16+7 x+x^2}+7 x+x^2\right ) (-7-2 x) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \exp \left (16+\frac {1}{8} e^{-e^{16+7 x+x^2}}-e^{16+7 x+x^2}+7 x+x^2\right ) (-7-2 x) \, dx\\ &=\frac {1}{8} \int \left (-7 \exp \left (16+\frac {1}{8} e^{-e^{16+7 x+x^2}}-e^{16+7 x+x^2}+7 x+x^2\right )-2 \exp \left (16+\frac {1}{8} e^{-e^{16+7 x+x^2}}-e^{16+7 x+x^2}+7 x+x^2\right ) x\right ) \, dx\\ &=-\left (\frac {1}{4} \int \exp \left (16+\frac {1}{8} e^{-e^{16+7 x+x^2}}-e^{16+7 x+x^2}+7 x+x^2\right ) x \, dx\right )-\frac {7}{8} \int \exp \left (16+\frac {1}{8} e^{-e^{16+7 x+x^2}}-e^{16+7 x+x^2}+7 x+x^2\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 20, normalized size = 0.87 \begin {gather*} e^{\frac {1}{8} e^{-e^{16+7 x+x^2}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 20, normalized size = 0.87 \begin {gather*} e^{\left (\frac {1}{2} \, e^{\left (-e^{\left (x^{2} + 7 \, x + 16\right )} - 2 \, \log \relax (2)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{2} \, {\left (2 \, x + 7\right )} e^{\left (x^{2} + 7 \, x - e^{\left (x^{2} + 7 \, x + 16\right )} + \frac {1}{2} \, e^{\left (-e^{\left (x^{2} + 7 \, x + 16\right )} - 2 \, \log \relax (2)\right )} - 2 \, \log \relax (2) + 16\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 16, normalized size = 0.70
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{-{\mathrm e}^{x^{2}+7 x +16}}}{8}}\) | \(16\) |
norman | \({\mathrm e}^{\frac {{\mathrm e}^{-{\mathrm e}^{x^{2}+7 x +16}}}{8}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 15, normalized size = 0.65 \begin {gather*} e^{\left (\frac {1}{8} \, e^{\left (-e^{\left (x^{2} + 7 \, x + 16\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.21, size = 16, normalized size = 0.70 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{-{\mathrm {e}}^{7\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{16}}}{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 15, normalized size = 0.65 \begin {gather*} e^{\frac {e^{- e^{x^{2} + 7 x + 16}}}{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________