Optimal. Leaf size=28 \[ e-e^{2+x-(4+x)^2 \log (7)}+\frac {1}{2 x}-2 x \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 47, normalized size of antiderivative = 1.68, number of steps used = 7, number of rules used = 4, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {12, 14, 2287, 2236} \begin {gather*} -\frac {7^{-x^2} \log (49) e^{x (1-8 \log (7))+2 (1-8 \log (7))}}{2 \log (7)}-2 x+\frac {1}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2236
Rule 2287
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-1-4 x^2+e^{2+x+\left (-16-8 x-x^2\right ) \log (7)} \left (-2 x^2+\left (16 x^2+4 x^3\right ) \log (7)\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {-1-4 x^2}{x^2}+2\ 7^{-(4+x)^2} e^{2+x} (-1+8 \log (7)+x \log (49))\right ) \, dx\\ &=\frac {1}{2} \int \frac {-1-4 x^2}{x^2} \, dx+\int 7^{-(4+x)^2} e^{2+x} (-1+8 \log (7)+x \log (49)) \, dx\\ &=\frac {1}{2} \int \left (-4-\frac {1}{x^2}\right ) \, dx+\int \exp \left (2 (1-8 \log (7))+x (1-8 \log (7))-x^2 \log (7)\right ) (-1+8 \log (7)+x \log (49)) \, dx\\ &=\frac {1}{2 x}-2 x-\frac {7^{-x^2} e^{2 (1-8 \log (7))+x (1-8 \log (7))} \log (49)}{2 \log (7)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 27, normalized size = 0.96 \begin {gather*} -7^{-(4+x)^2} e^{2+x}+\frac {1}{2 x}-2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 31, normalized size = 1.11 \begin {gather*} -\frac {4 \, x^{2} + 2 \, x e^{\left (-{\left (x^{2} + 8 \, x + 16\right )} \log \relax (7) + x + 2\right )} - 1}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 31, normalized size = 1.11 \begin {gather*} -\frac {132931722278404 \, x^{2} + 2 \, x e^{\left (-x^{2} \log \relax (7) - 8 \, x \log \relax (7) + x + 2\right )} - 33232930569601}{66465861139202 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 23, normalized size = 0.82
method | result | size |
risch | \(-2 x +\frac {1}{2 x}-\left (\frac {1}{7}\right )^{\left (4+x \right )^{2}} {\mathrm e}^{2+x}\) | \(23\) |
norman | \(\frac {\frac {1}{2}-2 x^{2}-x \,{\mathrm e}^{\left (-x^{2}-8 x -16\right ) \ln \relax (7)+2+x}}{x}\) | \(32\) |
default | \(-{\mathrm e}^{-x^{2} \ln \relax (7)+\left (-8 \ln \relax (7)+1\right ) x -16 \ln \relax (7)+2}+\frac {\left (-8 \ln \relax (7)+1\right ) \sqrt {\pi }\, {\mathrm e}^{-16 \ln \relax (7)+2+\frac {\left (-8 \ln \relax (7)+1\right )^{2}}{4 \ln \relax (7)}} \erf \left (\sqrt {\ln \relax (7)}\, x -\frac {-8 \ln \relax (7)+1}{2 \sqrt {\ln \relax (7)}}\right )}{2 \sqrt {\ln \relax (7)}}+4 \sqrt {\ln \relax (7)}\, \sqrt {\pi }\, {\mathrm e}^{-16 \ln \relax (7)+2+\frac {\left (-8 \ln \relax (7)+1\right )^{2}}{4 \ln \relax (7)}} \erf \left (\sqrt {\ln \relax (7)}\, x -\frac {-8 \ln \relax (7)+1}{2 \sqrt {\ln \relax (7)}}\right )-\frac {\sqrt {\pi }\, {\mathrm e}^{-16 \ln \relax (7)+2+\frac {\left (-8 \ln \relax (7)+1\right )^{2}}{4 \ln \relax (7)}} \erf \left (\sqrt {\ln \relax (7)}\, x -\frac {-8 \ln \relax (7)+1}{2 \sqrt {\ln \relax (7)}}\right )}{2 \sqrt {\ln \relax (7)}}-2 x +\frac {1}{2 x}\) | \(190\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.48, size = 231, normalized size = 8.25 \begin {gather*} \frac {4}{33232930569601} \, \sqrt {\pi } \operatorname {erf}\left (x \sqrt {\log \relax (7)} + \frac {8 \, \log \relax (7) - 1}{2 \, \sqrt {\log \relax (7)}}\right ) e^{\left (\frac {{\left (8 \, \log \relax (7) - 1\right )}^{2}}{4 \, \log \relax (7)} + 2\right )} \sqrt {\log \relax (7)} - \frac {{\left (\frac {\sqrt {\pi } {\left (2 \, x \log \relax (7) + 8 \, \log \relax (7) - 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {\frac {{\left (2 \, x \log \relax (7) + 8 \, \log \relax (7) - 1\right )}^{2}}{\log \relax (7)}}\right ) - 1\right )} {\left (8 \, \log \relax (7) - 1\right )}}{\sqrt {\frac {{\left (2 \, x \log \relax (7) + 8 \, \log \relax (7) - 1\right )}^{2}}{\log \relax (7)}} \left (-\log \relax (7)\right )^{\frac {3}{2}}} + \frac {2 \, e^{\left (-\frac {{\left (2 \, x \log \relax (7) + 8 \, \log \relax (7) - 1\right )}^{2}}{4 \, \log \relax (7)}\right )} \log \relax (7)}{\left (-\log \relax (7)\right )^{\frac {3}{2}}}\right )} e^{\left (\frac {{\left (8 \, \log \relax (7) - 1\right )}^{2}}{4 \, \log \relax (7)} + 2\right )} \log \relax (7)}{66465861139202 \, \sqrt {-\log \relax (7)}} - \frac {\sqrt {\pi } \operatorname {erf}\left (x \sqrt {\log \relax (7)} + \frac {8 \, \log \relax (7) - 1}{2 \, \sqrt {\log \relax (7)}}\right ) e^{\left (\frac {{\left (8 \, \log \relax (7) - 1\right )}^{2}}{4 \, \log \relax (7)} + 2\right )}}{66465861139202 \, \sqrt {\log \relax (7)}} - 2 \, x + \frac {1}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 29, normalized size = 1.04 \begin {gather*} \frac {1}{2\,x}-2\,x-\frac {{\mathrm {e}}^2\,{\mathrm {e}}^x}{33232930569601\,7^{8\,x}\,7^{x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 26, normalized size = 0.93 \begin {gather*} - 2 x - e^{x + \left (- x^{2} - 8 x - 16\right ) \log {\relax (7 )} + 2} + \frac {1}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________