Optimal. Leaf size=25 \[ x \left (-2+\frac {1}{9} \left (1+e^x-e^{x^2}+2 x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.39, antiderivative size = 120, normalized size of antiderivative = 4.80, number of steps used = 26, number of rules used = 10, integrand size = 89, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.112, Rules used = {12, 2176, 2194, 2226, 2204, 2212, 2196, 6742, 2209, 2288} \begin {gather*} \frac {4 x^3}{9}-\frac {4}{9} e^{x^2} x^2+\frac {4 e^x x^2}{9}+\frac {4 x^2}{9}-\frac {2 e^{x^2} x}{9}+\frac {1}{9} e^{2 x^2} x-\frac {2 e^{x^2+x} \left (2 x^2+x\right )}{9 (2 x+1)}+\frac {2 e^x x}{9}-\frac {17 x}{9}-\frac {e^{2 x}}{18}+\frac {1}{18} e^{2 x} (2 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rule 2204
Rule 2209
Rule 2212
Rule 2226
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \left (-17+8 x+12 x^2+e^{2 x} (1+2 x)+e^{2 x^2} \left (1+4 x^2\right )+e^x \left (2+10 x+4 x^2\right )+e^{x^2} \left (-2-8 x-4 x^2-8 x^3+e^x \left (-2-2 x-4 x^2\right )\right )\right ) \, dx\\ &=-\frac {17 x}{9}+\frac {4 x^2}{9}+\frac {4 x^3}{9}+\frac {1}{9} \int e^{2 x} (1+2 x) \, dx+\frac {1}{9} \int e^{2 x^2} \left (1+4 x^2\right ) \, dx+\frac {1}{9} \int e^x \left (2+10 x+4 x^2\right ) \, dx+\frac {1}{9} \int e^{x^2} \left (-2-8 x-4 x^2-8 x^3+e^x \left (-2-2 x-4 x^2\right )\right ) \, dx\\ &=-\frac {17 x}{9}+\frac {4 x^2}{9}+\frac {4 x^3}{9}+\frac {1}{18} e^{2 x} (1+2 x)-\frac {1}{9} \int e^{2 x} \, dx+\frac {1}{9} \int \left (2 e^x+10 e^x x+4 e^x x^2\right ) \, dx+\frac {1}{9} \int \left (e^{2 x^2}+4 e^{2 x^2} x^2\right ) \, dx+\frac {1}{9} \int \left (-2 e^{x^2}-8 e^{x^2} x-4 e^{x^2} x^2-8 e^{x^2} x^3-2 e^{x+x^2} \left (1+x+2 x^2\right )\right ) \, dx\\ &=-\frac {e^{2 x}}{18}-\frac {17 x}{9}+\frac {4 x^2}{9}+\frac {4 x^3}{9}+\frac {1}{18} e^{2 x} (1+2 x)+\frac {1}{9} \int e^{2 x^2} \, dx+\frac {2 \int e^x \, dx}{9}-\frac {2}{9} \int e^{x^2} \, dx-\frac {2}{9} \int e^{x+x^2} \left (1+x+2 x^2\right ) \, dx+\frac {4}{9} \int e^x x^2 \, dx-\frac {4}{9} \int e^{x^2} x^2 \, dx+\frac {4}{9} \int e^{2 x^2} x^2 \, dx-\frac {8}{9} \int e^{x^2} x \, dx-\frac {8}{9} \int e^{x^2} x^3 \, dx+\frac {10}{9} \int e^x x \, dx\\ &=\frac {2 e^x}{9}-\frac {e^{2 x}}{18}-\frac {4 e^{x^2}}{9}-\frac {17 x}{9}+\frac {10 e^x x}{9}-\frac {2 e^{x^2} x}{9}+\frac {1}{9} e^{2 x^2} x+\frac {4 x^2}{9}+\frac {4 e^x x^2}{9}-\frac {4}{9} e^{x^2} x^2+\frac {4 x^3}{9}+\frac {1}{18} e^{2 x} (1+2 x)-\frac {2 e^{x+x^2} \left (x+2 x^2\right )}{9 (1+2 x)}-\frac {1}{9} \sqrt {\pi } \text {erfi}(x)+\frac {1}{18} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\sqrt {2} x\right )-\frac {1}{9} \int e^{2 x^2} \, dx+\frac {2}{9} \int e^{x^2} \, dx-\frac {8}{9} \int e^x x \, dx+\frac {8}{9} \int e^{x^2} x \, dx-\frac {10 \int e^x \, dx}{9}\\ &=-\frac {8 e^x}{9}-\frac {e^{2 x}}{18}-\frac {17 x}{9}+\frac {2 e^x x}{9}-\frac {2 e^{x^2} x}{9}+\frac {1}{9} e^{2 x^2} x+\frac {4 x^2}{9}+\frac {4 e^x x^2}{9}-\frac {4}{9} e^{x^2} x^2+\frac {4 x^3}{9}+\frac {1}{18} e^{2 x} (1+2 x)-\frac {2 e^{x+x^2} \left (x+2 x^2\right )}{9 (1+2 x)}+\frac {8 \int e^x \, dx}{9}\\ &=-\frac {e^{2 x}}{18}-\frac {17 x}{9}+\frac {2 e^x x}{9}-\frac {2 e^{x^2} x}{9}+\frac {1}{9} e^{2 x^2} x+\frac {4 x^2}{9}+\frac {4 e^x x^2}{9}-\frac {4}{9} e^{x^2} x^2+\frac {4 x^3}{9}+\frac {1}{18} e^{2 x} (1+2 x)-\frac {2 e^{x+x^2} \left (x+2 x^2\right )}{9 (1+2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.07, size = 57, normalized size = 2.28 \begin {gather*} \frac {1}{9} x \left (-17+e^{2 x}+e^{2 x^2}-2 e^{x+x^2}+4 x+4 x^2-2 e^{x^2} (1+2 x)+e^x (2+4 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 58, normalized size = 2.32 \begin {gather*} \frac {4}{9} \, x^{3} + \frac {4}{9} \, x^{2} + \frac {1}{9} \, x e^{\left (2 \, x^{2}\right )} - \frac {2}{9} \, {\left (2 \, x^{2} + x e^{x} + x\right )} e^{\left (x^{2}\right )} + \frac {1}{9} \, x e^{\left (2 \, x\right )} + \frac {2}{9} \, {\left (2 \, x^{2} + x\right )} e^{x} - \frac {17}{9} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 63, normalized size = 2.52 \begin {gather*} \frac {4}{9} \, x^{3} + \frac {4}{9} \, x^{2} + \frac {1}{9} \, x e^{\left (2 \, x^{2}\right )} - \frac {2}{9} \, x e^{\left (x^{2} + x\right )} - \frac {2}{9} \, {\left (2 \, x^{2} + x\right )} e^{\left (x^{2}\right )} + \frac {1}{9} \, x e^{\left (2 \, x\right )} + \frac {2}{9} \, {\left (2 \, x^{2} + x\right )} e^{x} - \frac {17}{9} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 64, normalized size = 2.56
method | result | size |
risch | \(\frac {x \,{\mathrm e}^{2 x^{2}}}{9}+\frac {\left (-4 x^{2}-2 \,{\mathrm e}^{x} x -2 x \right ) {\mathrm e}^{x^{2}}}{9}+\frac {x \,{\mathrm e}^{2 x}}{9}+\frac {\left (4 x^{2}+2 x \right ) {\mathrm e}^{x}}{9}+\frac {4 x^{3}}{9}+\frac {4 x^{2}}{9}-\frac {17 x}{9}\) | \(64\) |
default | \(-\frac {17 x}{9}+\frac {4 x^{2}}{9}+\frac {4 x^{3}}{9}+\frac {x \,{\mathrm e}^{2 x}}{9}-\frac {4 x^{2} {\mathrm e}^{x^{2}}}{9}-\frac {2 \,{\mathrm e}^{x^{2}} x}{9}-\frac {2 x \,{\mathrm e}^{x^{2}+x}}{9}+\frac {x \,{\mathrm e}^{2 x^{2}}}{9}+\frac {4 \,{\mathrm e}^{x} x^{2}}{9}+\frac {2 \,{\mathrm e}^{x} x}{9}\) | \(68\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 58, normalized size = 2.32 \begin {gather*} \frac {4}{9} \, x^{3} + \frac {4}{9} \, x^{2} + \frac {1}{9} \, x e^{\left (2 \, x^{2}\right )} - \frac {2}{9} \, {\left (2 \, x^{2} + x e^{x} + x\right )} e^{\left (x^{2}\right )} + \frac {1}{9} \, x e^{\left (2 \, x\right )} + \frac {2}{9} \, {\left (2 \, x^{2} + x\right )} e^{x} - \frac {17}{9} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 53, normalized size = 2.12 \begin {gather*} \frac {x\,\left (4\,x-2\,{\mathrm {e}}^{x^2+x}+{\mathrm {e}}^{2\,x}-2\,{\mathrm {e}}^{x^2}+{\mathrm {e}}^{2\,x^2}+2\,{\mathrm {e}}^x-4\,x\,{\mathrm {e}}^{x^2}+4\,x\,{\mathrm {e}}^x+4\,x^2-17\right )}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.31, size = 73, normalized size = 2.92 \begin {gather*} \frac {4 x^{3}}{9} + \frac {4 x^{2}}{9} + \frac {x e^{2 x}}{9} + \frac {x e^{2 x^{2}}}{9} - \frac {17 x}{9} + \frac {\left (36 x^{2} + 18 x\right ) e^{x}}{81} + \frac {\left (- 36 x^{2} - 18 x e^{x} - 18 x\right ) e^{x^{2}}}{81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________