Optimal. Leaf size=29 \[ \left (\frac {e^x}{x}-\frac {5 (-1+x) \left (-3+(2+2 x)^2\right )}{3 x}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.20, antiderivative size = 85, normalized size of antiderivative = 2.93, number of steps used = 17, number of rules used = 8, integrand size = 67, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {12, 14, 2197, 2199, 2194, 2177, 2178, 2176} \begin {gather*} \frac {400 x^4}{9}+\frac {800 x^3}{9}-\frac {1000 x^2}{9}+\frac {10 e^x}{3 x^2}+\frac {e^{2 x}}{x^2}+\frac {25}{9 x^2}-\frac {40 e^x x}{3}-\frac {1600 x}{9}-\frac {40 e^x}{3}+\frac {70 e^x}{3 x}+\frac {350}{9 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2197
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \frac {-50-350 x-1600 x^3-2000 x^4+2400 x^5+1600 x^6+e^{2 x} (-18+18 x)+e^x \left (-60-180 x+210 x^2-240 x^3-120 x^4\right )}{x^3} \, dx\\ &=\frac {1}{9} \int \left (\frac {18 e^{2 x} (-1+x)}{x^3}-\frac {30 e^x \left (2+6 x-7 x^2+8 x^3+4 x^4\right )}{x^3}+\frac {50 \left (-1-7 x-32 x^3-40 x^4+48 x^5+32 x^6\right )}{x^3}\right ) \, dx\\ &=2 \int \frac {e^{2 x} (-1+x)}{x^3} \, dx-\frac {10}{3} \int \frac {e^x \left (2+6 x-7 x^2+8 x^3+4 x^4\right )}{x^3} \, dx+\frac {50}{9} \int \frac {-1-7 x-32 x^3-40 x^4+48 x^5+32 x^6}{x^3} \, dx\\ &=\frac {e^{2 x}}{x^2}-\frac {10}{3} \int \left (8 e^x+\frac {2 e^x}{x^3}+\frac {6 e^x}{x^2}-\frac {7 e^x}{x}+4 e^x x\right ) \, dx+\frac {50}{9} \int \left (-32-\frac {1}{x^3}-\frac {7}{x^2}-40 x+48 x^2+32 x^3\right ) \, dx\\ &=\frac {25}{9 x^2}+\frac {e^{2 x}}{x^2}+\frac {350}{9 x}-\frac {1600 x}{9}-\frac {1000 x^2}{9}+\frac {800 x^3}{9}+\frac {400 x^4}{9}-\frac {20}{3} \int \frac {e^x}{x^3} \, dx-\frac {40}{3} \int e^x x \, dx-20 \int \frac {e^x}{x^2} \, dx+\frac {70}{3} \int \frac {e^x}{x} \, dx-\frac {80 \int e^x \, dx}{3}\\ &=-\frac {80 e^x}{3}+\frac {25}{9 x^2}+\frac {10 e^x}{3 x^2}+\frac {e^{2 x}}{x^2}+\frac {350}{9 x}+\frac {20 e^x}{x}-\frac {1600 x}{9}-\frac {40 e^x x}{3}-\frac {1000 x^2}{9}+\frac {800 x^3}{9}+\frac {400 x^4}{9}+\frac {70 \text {Ei}(x)}{3}-\frac {10}{3} \int \frac {e^x}{x^2} \, dx+\frac {40 \int e^x \, dx}{3}-20 \int \frac {e^x}{x} \, dx\\ &=-\frac {40 e^x}{3}+\frac {25}{9 x^2}+\frac {10 e^x}{3 x^2}+\frac {e^{2 x}}{x^2}+\frac {350}{9 x}+\frac {70 e^x}{3 x}-\frac {1600 x}{9}-\frac {40 e^x x}{3}-\frac {1000 x^2}{9}+\frac {800 x^3}{9}+\frac {400 x^4}{9}+\frac {10 \text {Ei}(x)}{3}-\frac {10}{3} \int \frac {e^x}{x} \, dx\\ &=-\frac {40 e^x}{3}+\frac {25}{9 x^2}+\frac {10 e^x}{3 x^2}+\frac {e^{2 x}}{x^2}+\frac {350}{9 x}+\frac {70 e^x}{3 x}-\frac {1600 x}{9}-\frac {40 e^x x}{3}-\frac {1000 x^2}{9}+\frac {800 x^3}{9}+\frac {400 x^4}{9}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 62, normalized size = 2.14 \begin {gather*} \frac {1}{9} \left (e^x \left (-120+\frac {30}{x^2}+\frac {210}{x}-120 x\right )+\frac {25}{x^2}+\frac {9 e^{2 x}}{x^2}+\frac {350}{x}-1600 x-1000 x^2+800 x^3+400 x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 55, normalized size = 1.90 \begin {gather*} \frac {400 \, x^{6} + 800 \, x^{5} - 1000 \, x^{4} - 1600 \, x^{3} - 30 \, {\left (4 \, x^{3} + 4 \, x^{2} - 7 \, x - 1\right )} e^{x} + 350 \, x + 9 \, e^{\left (2 \, x\right )} + 25}{9 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 59, normalized size = 2.03 \begin {gather*} \frac {400 \, x^{6} + 800 \, x^{5} - 1000 \, x^{4} - 120 \, x^{3} e^{x} - 1600 \, x^{3} - 120 \, x^{2} e^{x} + 210 \, x e^{x} + 350 \, x + 9 \, e^{\left (2 \, x\right )} + 30 \, e^{x} + 25}{9 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 57, normalized size = 1.97
method | result | size |
norman | \(\frac {\frac {25}{9}+{\mathrm e}^{2 x}+\frac {350 x}{9}-\frac {1600 x^{3}}{9}-\frac {1000 x^{4}}{9}+\frac {800 x^{5}}{9}+\frac {400 x^{6}}{9}+\frac {70 \,{\mathrm e}^{x} x}{3}-\frac {40 \,{\mathrm e}^{x} x^{2}}{3}-\frac {40 \,{\mathrm e}^{x} x^{3}}{3}+\frac {10 \,{\mathrm e}^{x}}{3}}{x^{2}}\) | \(57\) |
risch | \(\frac {400 x^{4}}{9}+\frac {800 x^{3}}{9}-\frac {1000 x^{2}}{9}-\frac {1600 x}{9}+\frac {350 x +25}{9 x^{2}}+\frac {{\mathrm e}^{2 x}}{x^{2}}-\frac {10 \left (4 x^{3}+4 x^{2}-7 x -1\right ) {\mathrm e}^{x}}{3 x^{2}}\) | \(60\) |
default | \(-\frac {1000 x^{2}}{9}-\frac {1600 x}{9}+\frac {25}{9 x^{2}}+\frac {350}{9 x}+\frac {800 x^{3}}{9}+\frac {400 x^{4}}{9}+\frac {{\mathrm e}^{2 x}}{x^{2}}+\frac {10 \,{\mathrm e}^{x}}{3 x^{2}}+\frac {70 \,{\mathrm e}^{x}}{3 x}-\frac {40 \,{\mathrm e}^{x} x}{3}-\frac {40 \,{\mathrm e}^{x}}{3}\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 72, normalized size = 2.48 \begin {gather*} \frac {400}{9} \, x^{4} + \frac {800}{9} \, x^{3} - \frac {1000}{9} \, x^{2} - \frac {40}{3} \, {\left (x - 1\right )} e^{x} - \frac {1600}{9} \, x + \frac {350}{9 \, x} + \frac {25}{9 \, x^{2}} + \frac {70}{3} \, {\rm Ei}\relax (x) - \frac {80}{3} \, e^{x} - 20 \, \Gamma \left (-1, -x\right ) + 4 \, \Gamma \left (-1, -2 \, x\right ) + \frac {20}{3} \, \Gamma \left (-2, -x\right ) + 8 \, \Gamma \left (-2, -2 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.88, size = 51, normalized size = 1.76 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}+\frac {10\,{\mathrm {e}}^x}{3}+x\,\left (\frac {70\,{\mathrm {e}}^x}{3}+\frac {350}{9}\right )+\frac {25}{9}}{x^2}-x\,\left (\frac {40\,{\mathrm {e}}^x}{3}+\frac {1600}{9}\right )-\frac {40\,{\mathrm {e}}^x}{3}-\frac {1000\,x^2}{9}+\frac {800\,x^3}{9}+\frac {400\,x^4}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 73, normalized size = 2.52 \begin {gather*} \frac {400 x^{4}}{9} + \frac {800 x^{3}}{9} - \frac {1000 x^{2}}{9} - \frac {1600 x}{9} + \frac {350 x + 25}{9 x^{2}} + \frac {3 x^{2} e^{2 x} + \left (- 40 x^{5} - 40 x^{4} + 70 x^{3} + 10 x^{2}\right ) e^{x}}{3 x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________