Optimal. Leaf size=31 \[ \frac {1}{9} (-1-x)+e^{-4 x} x^2+\log \left (16+e^{e^{5-x}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.07, antiderivative size = 27, normalized size of antiderivative = 0.87, number of steps used = 15, number of rules used = 10, integrand size = 78, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {6741, 12, 6742, 2282, 2247, 2246, 31, 2196, 2176, 2194} \begin {gather*} e^{-4 x} x^2-\frac {x}{9}+\log \left (e^{e^{5-x}}+16\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 2176
Rule 2194
Rule 2196
Rule 2246
Rule 2247
Rule 2282
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-4 x} \left (-16 e^{4 x}+288 x-576 x^2+e^{e^{5-x}} \left (e^{4 x} \left (-1-9 e^{5-x}\right )+18 x-36 x^2\right )\right )}{9 \left (16+e^{e^{5-x}}\right )} \, dx\\ &=\frac {1}{9} \int \frac {e^{-4 x} \left (-16 e^{4 x}+288 x-576 x^2+e^{e^{5-x}} \left (e^{4 x} \left (-1-9 e^{5-x}\right )+18 x-36 x^2\right )\right )}{16+e^{e^{5-x}}} \, dx\\ &=\frac {1}{9} \int \left (-1-\frac {9 e^{5+e^{5-x}-x}}{16+e^{e^{5-x}}}-18 e^{-4 x} x (-1+2 x)\right ) \, dx\\ &=-\frac {x}{9}-2 \int e^{-4 x} x (-1+2 x) \, dx-\int \frac {e^{5+e^{5-x}-x}}{16+e^{e^{5-x}}} \, dx\\ &=-\frac {x}{9}-2 \int \left (-e^{-4 x} x+2 e^{-4 x} x^2\right ) \, dx+\operatorname {Subst}\left (\int \frac {e^{5+e^5 x}}{16+e^{e^5 x}} \, dx,x,e^{-x}\right )\\ &=-\frac {x}{9}+2 \int e^{-4 x} x \, dx-4 \int e^{-4 x} x^2 \, dx+e^5 \operatorname {Subst}\left (\int \frac {e^{e^5 x}}{16+e^{e^5 x}} \, dx,x,e^{-x}\right )\\ &=-\frac {x}{9}-\frac {1}{2} e^{-4 x} x+e^{-4 x} x^2+\frac {1}{2} \int e^{-4 x} \, dx-2 \int e^{-4 x} x \, dx+\operatorname {Subst}\left (\int \frac {1}{16+x} \, dx,x,e^{e^{5-x}}\right )\\ &=-\frac {1}{8} e^{-4 x}-\frac {x}{9}+e^{-4 x} x^2+\log \left (16+e^{e^{5-x}}\right )-\frac {1}{2} \int e^{-4 x} \, dx\\ &=-\frac {x}{9}+e^{-4 x} x^2+\log \left (16+e^{e^{5-x}}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.55, size = 32, normalized size = 1.03 \begin {gather*} \frac {1}{9} \left (-x+9 e^{-4 x} x^2+9 \log \left (16+e^{e^{5-x}}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 47, normalized size = 1.52 \begin {gather*} \frac {1}{9} \, {\left (9 \, x^{2} e^{\left (-4 \, x + 20\right )} - 37 \, x e^{20} + 9 \, e^{20} \log \left ({\left (16 \, e^{20} + e^{\left (e^{\left (-x + 5\right )} + 20\right )}\right )} e^{\left (4 \, x - 20\right )}\right )\right )} e^{\left (-20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {576 \, x^{2} + {\left (36 \, x^{2} + {\left (9 \, e^{\left (-x + 5\right )} + 1\right )} e^{\left (4 \, x\right )} - 18 \, x\right )} e^{\left (e^{\left (-x + 5\right )}\right )} - 288 \, x + 16 \, e^{\left (4 \, x\right )}}{9 \, {\left (16 \, e^{\left (4 \, x\right )} + e^{\left (4 \, x + e^{\left (-x + 5\right )}\right )}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 23, normalized size = 0.74
method | result | size |
risch | \(-\frac {x}{9}+x^{2} {\mathrm e}^{-4 x}+\ln \left (16+{\mathrm e}^{{\mathrm e}^{5-x}}\right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 14, normalized size = 0.45 \begin {gather*} -\frac {1}{9} \, x + \log \left (e^{\left (e^{\left (-x + 5\right )}\right )} + 16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.38, size = 23, normalized size = 0.74 \begin {gather*} \ln \left ({\mathrm {e}}^{{\mathrm {e}}^{-x}\,{\mathrm {e}}^5}+16\right )-\frac {x}{9}+x^2\,{\mathrm {e}}^{-4\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 27, normalized size = 0.87 \begin {gather*} x^{2} e^{- 4 x} - \frac {x}{9} + \log {\left (e^{\frac {e^{5}}{\sqrt [4]{e^{4 x}}}} + 16 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________