Optimal. Leaf size=22 \[ \log (x)+e^{-x} \left (\log (x)+\log \left (\frac {100 \log ^2(x)}{x^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.57, antiderivative size = 37, normalized size of antiderivative = 1.68, number of steps used = 3, number of rules used = 2, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {6742, 2288} \begin {gather*} \frac {e^{-x} \left (x \log \left (\frac {100 \log ^2(x)}{x^2}\right ) \log (x)+x \log ^2(x)\right )}{x \log (x)}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}+\frac {e^{-x} \left (2-\log (x)-x \log ^2(x)-x \log (x) \log \left (\frac {100 \log ^2(x)}{x^2}\right )\right )}{x \log (x)}\right ) \, dx\\ &=\log (x)+\int \frac {e^{-x} \left (2-\log (x)-x \log ^2(x)-x \log (x) \log \left (\frac {100 \log ^2(x)}{x^2}\right )\right )}{x \log (x)} \, dx\\ &=\log (x)+\frac {e^{-x} \left (x \log ^2(x)+x \log (x) \log \left (\frac {100 \log ^2(x)}{x^2}\right )\right )}{x \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 27, normalized size = 1.23 \begin {gather*} \log (x)+e^{-x} \log (x)+e^{-x} \log \left (\frac {100 \log ^2(x)}{x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 23, normalized size = 1.05 \begin {gather*} {\left ({\left (e^{x} + 1\right )} \log \relax (x) + \log \left (\frac {100 \, \log \relax (x)^{2}}{x^{2}}\right )\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 23, normalized size = 1.05 \begin {gather*} e^{\left (-x\right )} \log \left (100 \, \log \relax (x)^{2}\right ) - e^{\left (-x\right )} \log \relax (x) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.53, size = 235, normalized size = 10.68
method | result | size |
risch | \(2 \,{\mathrm e}^{-x} \ln \left (\ln \relax (x )\right )+\frac {\left (-i \pi \mathrm {csgn}\left (\frac {i \ln \relax (x )^{2}}{x^{2}}\right )^{3}+i \pi \mathrm {csgn}\left (\frac {i \ln \relax (x )^{2}}{x^{2}}\right )^{2} \mathrm {csgn}\left (\frac {i}{x^{2}}\right )-i \pi \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{3}+2 i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+i \pi \mathrm {csgn}\left (\frac {i \ln \relax (x )^{2}}{x^{2}}\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )-i \pi \,\mathrm {csgn}\left (\frac {i \ln \relax (x )^{2}}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )-i \pi \mathrm {csgn}\left (i \ln \relax (x )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+2 \,{\mathrm e}^{x} \ln \relax (x )+4 \ln \relax (2)+4 \ln \relax (5)-2 \ln \relax (x )\right ) {\mathrm e}^{-x}}{2}\) | \(235\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -{\left (\log \relax (x) - 2 \, \log \left (\log \relax (x)\right )\right )} e^{\left (-x\right )} - {\rm Ei}\left (-x\right ) - \int \frac {{\left (2 \, x {\left (\log \relax (5) + \log \relax (2)\right )} - 1\right )} e^{\left (-x\right )}}{x}\,{d x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {{\mathrm {e}}^{-x}\,\left (x\,{\ln \relax (x)}^2-\ln \relax (x)\,\left ({\mathrm {e}}^x-1\right )+x\,\ln \relax (x)\,\ln \left (\frac {100\,{\ln \relax (x)}^2}{x^2}\right )-2\right )}{x\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 13.09, size = 20, normalized size = 0.91 \begin {gather*} \left (\log {\relax (x )} + \log {\left (\frac {100 \log {\relax (x )}^{2}}{x^{2}} \right )}\right ) e^{- x} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________