Optimal. Leaf size=26 \[ \log \left (\frac {1}{4 \left (-3+\left (-4 x+\frac {x}{e^3}+\log \left (5 e^x\right )\right )^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x+14 e^3 x-24 e^6 x+\left (-2 e^3+6 e^6\right ) \log \left (5 e^x\right )}{x^2-8 e^3 x^2+e^6 \left (-3+16 x^2\right )+\left (2 e^3 x-8 e^6 x\right ) \log \left (5 e^x\right )+e^6 \log ^2\left (5 e^x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-24 e^6 x+\left (-2+14 e^3\right ) x+\left (-2 e^3+6 e^6\right ) \log \left (5 e^x\right )}{x^2-8 e^3 x^2+e^6 \left (-3+16 x^2\right )+\left (2 e^3 x-8 e^6 x\right ) \log \left (5 e^x\right )+e^6 \log ^2\left (5 e^x\right )} \, dx\\ &=\int \frac {\left (-2+14 e^3-24 e^6\right ) x+\left (-2 e^3+6 e^6\right ) \log \left (5 e^x\right )}{x^2-8 e^3 x^2+e^6 \left (-3+16 x^2\right )+\left (2 e^3 x-8 e^6 x\right ) \log \left (5 e^x\right )+e^6 \log ^2\left (5 e^x\right )} \, dx\\ &=\int \frac {\left (-2+14 e^3-24 e^6\right ) x+\left (-2 e^3+6 e^6\right ) \log \left (5 e^x\right )}{\left (1-8 e^3\right ) x^2+e^6 \left (-3+16 x^2\right )+\left (2 e^3 x-8 e^6 x\right ) \log \left (5 e^x\right )+e^6 \log ^2\left (5 e^x\right )} \, dx\\ &=\int \frac {2 \left (1-3 e^3\right ) \left (-\left (\left (1-4 e^3\right ) x\right )-e^3 \log \left (5 e^x\right )\right )}{\left (1-8 e^3\right ) x^2+e^6 \left (-3+16 x^2\right )+\left (2 e^3 x-8 e^6 x\right ) \log \left (5 e^x\right )+e^6 \log ^2\left (5 e^x\right )} \, dx\\ &=\left (2 \left (1-3 e^3\right )\right ) \int \frac {-\left (\left (1-4 e^3\right ) x\right )-e^3 \log \left (5 e^x\right )}{\left (1-8 e^3\right ) x^2+e^6 \left (-3+16 x^2\right )+\left (2 e^3 x-8 e^6 x\right ) \log \left (5 e^x\right )+e^6 \log ^2\left (5 e^x\right )} \, dx\\ &=\left (2 \left (1-3 e^3\right )\right ) \int \left (\frac {\left (1-4 e^3\right ) x}{3 e^6-\left (1+8 e^3 \left (-1+2 e^3\right )\right ) x^2-2 e^3 \left (1-4 e^3\right ) x \log \left (5 e^x\right )-e^6 \log ^2\left (5 e^x\right )}+\frac {e^3 \log \left (5 e^x\right )}{3 e^6-\left (1+8 e^3 \left (-1+2 e^3\right )\right ) x^2-2 e^3 \left (1-4 e^3\right ) x \log \left (5 e^x\right )-e^6 \log ^2\left (5 e^x\right )}\right ) \, dx\\ &=\left (2 e^3 \left (1-3 e^3\right )\right ) \int \frac {\log \left (5 e^x\right )}{3 e^6-\left (1+8 e^3 \left (-1+2 e^3\right )\right ) x^2-2 e^3 \left (1-4 e^3\right ) x \log \left (5 e^x\right )-e^6 \log ^2\left (5 e^x\right )} \, dx+\left (2 \left (1-4 e^3\right ) \left (1-3 e^3\right )\right ) \int \frac {x}{3 e^6-\left (1+8 e^3 \left (-1+2 e^3\right )\right ) x^2-2 e^3 \left (1-4 e^3\right ) x \log \left (5 e^x\right )-e^6 \log ^2\left (5 e^x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.22, size = 74, normalized size = 2.85 \begin {gather*} -\frac {2 \left (-1+3 e^3\right ) \log \left (x^2-8 e^3 x^2+e^6 \left (-3+16 x^2\right )+\left (2 e^3 x-8 e^6 x\right ) \log \left (5 e^x\right )+e^6 \log ^2\left (5 e^x\right )\right )}{-2+6 e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 47, normalized size = 1.81 \begin {gather*} -\log \left (-6 \, x^{2} e^{3} + e^{6} \log \relax (5)^{2} + x^{2} + 3 \, {\left (3 \, x^{2} - 1\right )} e^{6} - 2 \, {\left (3 \, x e^{6} - x e^{3}\right )} \log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 50, normalized size = 1.92 \begin {gather*} -\log \left ({\left | -9 \, x^{2} e^{6} + 6 \, x^{2} e^{3} + 6 \, x e^{6} \log \relax (5) - 2 \, x e^{3} \log \relax (5) - e^{6} \log \relax (5)^{2} - x^{2} + 3 \, e^{6} \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.23, size = 64, normalized size = 2.46
method | result | size |
norman | \(-\ln \left ({\mathrm e}^{6} \ln \left (5 \,{\mathrm e}^{x}\right )^{2}-8 \ln \left (5 \,{\mathrm e}^{x}\right ) x \,{\mathrm e}^{6}+16 x^{2} {\mathrm e}^{6}+2 \ln \left (5 \,{\mathrm e}^{x}\right ) x \,{\mathrm e}^{3}-8 x^{2} {\mathrm e}^{3}-3 \,{\mathrm e}^{6}+x^{2}\right )\) | \(64\) |
risch | \(-\ln \left (\ln \left ({\mathrm e}^{x}\right )^{2}+{\mathrm e}^{-3} \left (2 \,{\mathrm e}^{3} \ln \relax (5)-8 x \,{\mathrm e}^{3}+2 x \right ) \ln \left ({\mathrm e}^{x}\right )-\frac {\left (-8 x \,{\mathrm e}^{3} \ln \relax (5)+12 \,{\mathrm e}^{6}-4 x^{2}-64 x^{2} {\mathrm e}^{6}+32 x^{2} {\mathrm e}^{3}-4 \,{\mathrm e}^{6} \ln \relax (5)^{2}+32 \ln \relax (5) {\mathrm e}^{6} x \right ) {\mathrm e}^{-6}}{4}\right )\) | \(81\) |
default | \(\frac {\ln \left (9 x^{2} {\mathrm e}^{6}-6 \,{\mathrm e}^{6} x \left (\ln \left (5 \,{\mathrm e}^{x}\right )-x \right )+{\mathrm e}^{6} \left (\ln \left (5 \,{\mathrm e}^{x}\right )-x \right )^{2}-6 x^{2} {\mathrm e}^{3}+2 \,{\mathrm e}^{3} x \left (\ln \left (5 \,{\mathrm e}^{x}\right )-x \right )-3 \,{\mathrm e}^{6}+x^{2}\right )}{-1+3 \,{\mathrm e}^{3}}-\frac {3 \ln \left (9 x^{2} {\mathrm e}^{6}-6 \,{\mathrm e}^{6} x \left (\ln \left (5 \,{\mathrm e}^{x}\right )-x \right )+{\mathrm e}^{6} \left (\ln \left (5 \,{\mathrm e}^{x}\right )-x \right )^{2}-6 x^{2} {\mathrm e}^{3}+2 \,{\mathrm e}^{3} x \left (\ln \left (5 \,{\mathrm e}^{x}\right )-x \right )-3 \,{\mathrm e}^{6}+x^{2}\right ) {\mathrm e}^{3}}{-1+3 \,{\mathrm e}^{3}}\) | \(169\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 1021, normalized size = 39.27 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 10.04, size = 48, normalized size = 1.85 \begin {gather*} -\ln \left (3\,{\mathrm {e}}^6-{\mathrm {e}}^6\,{\ln \relax (5)}^2+6\,x^2\,{\mathrm {e}}^3-9\,x^2\,{\mathrm {e}}^6-x^2+2\,x\,{\mathrm {e}}^3\,\ln \relax (5)\,\left (3\,{\mathrm {e}}^3-1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.55, size = 49, normalized size = 1.88 \begin {gather*} - \log {\left (x^{2} \left (- 6 e^{3} + 1 + 9 e^{6}\right ) + x \left (- 6 e^{6} \log {\relax (5 )} + 2 e^{3} \log {\relax (5 )}\right ) - 3 e^{6} + e^{6} \log {\relax (5 )}^{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________