Optimal. Leaf size=22 \[ \frac {x \left (\frac {-4+4 x}{x^3}+\log \left (3 x^3\right )\right )}{\log (4)} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 31, normalized size of antiderivative = 1.41, number of steps used = 6, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {12, 14, 2295} \begin {gather*} \frac {x \log \left (3 x^3\right )}{\log (4)}-\frac {4}{x^2 \log (4)}+\frac {4}{x \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {8-4 x+3 x^3+x^3 \log \left (3 x^3\right )}{x^3} \, dx}{\log (4)}\\ &=\frac {\int \left (\frac {8-4 x+3 x^3}{x^3}+\log \left (3 x^3\right )\right ) \, dx}{\log (4)}\\ &=\frac {\int \frac {8-4 x+3 x^3}{x^3} \, dx}{\log (4)}+\frac {\int \log \left (3 x^3\right ) \, dx}{\log (4)}\\ &=-\frac {3 x}{\log (4)}+\frac {x \log \left (3 x^3\right )}{\log (4)}+\frac {\int \left (3+\frac {8}{x^3}-\frac {4}{x^2}\right ) \, dx}{\log (4)}\\ &=-\frac {4}{x^2 \log (4)}+\frac {4}{x \log (4)}+\frac {x \log \left (3 x^3\right )}{\log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 1.09 \begin {gather*} \frac {-\frac {4}{x^2}+\frac {4}{x}+x \log \left (3 x^3\right )}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 24, normalized size = 1.09 \begin {gather*} \frac {x^{3} \log \left (3 \, x^{3}\right ) + 4 \, x - 4}{2 \, x^{2} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 23, normalized size = 1.05 \begin {gather*} \frac {x \log \left (3 \, x^{3}\right ) + \frac {4 \, {\left (x - 1\right )}}{x^{2}}}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 27, normalized size = 1.23
method | result | size |
risch | \(\frac {\ln \left (3 x^{3}\right ) x}{2 \ln \relax (2)}+\frac {2 x -2}{x^{2} \ln \relax (2)}\) | \(27\) |
default | \(\frac {\frac {4}{x}-\frac {4}{x^{2}}+x \ln \relax (3)+x \ln \left (x^{3}\right )}{2 \ln \relax (2)}\) | \(28\) |
norman | \(\frac {-\frac {2}{\ln \relax (2)}+\frac {2 x}{\ln \relax (2)}+\frac {x^{3} \ln \left (3 x^{3}\right )}{2 \ln \relax (2)}}{x^{2}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 25, normalized size = 1.14 \begin {gather*} \frac {x \log \left (3 \, x^{3}\right ) + \frac {4}{x} - \frac {4}{x^{2}}}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.94, size = 28, normalized size = 1.27 \begin {gather*} \frac {4\,x^2-4\,x+x^4\,\ln \left (3\,x^3\right )}{2\,x^3\,\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 24, normalized size = 1.09 \begin {gather*} \frac {x \log {\left (3 x^{3} \right )}}{2 \log {\relax (2 )}} - \frac {2 - 2 x}{x^{2} \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________