Optimal. Leaf size=29 \[ \frac {5}{4-x^4+\log \left (\frac {x}{-e^{2/3}+\frac {16}{x^2}}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 30, normalized size of antiderivative = 1.03, number of steps used = 3, number of rules used = 3, integrand size = 142, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {6688, 12, 6686} \begin {gather*} \frac {5}{-x^4+\log \left (\frac {x^3}{16-e^{2/3} x^2}\right )+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (-48+64 x^4-e^{2/3} x^2 \left (-1+4 x^4\right )\right )}{x \left (16-e^{2/3} x^2\right ) \left (4-x^4+\log \left (\frac {x^3}{16-e^{2/3} x^2}\right )\right )^2} \, dx\\ &=5 \int \frac {-48+64 x^4-e^{2/3} x^2 \left (-1+4 x^4\right )}{x \left (16-e^{2/3} x^2\right ) \left (4-x^4+\log \left (\frac {x^3}{16-e^{2/3} x^2}\right )\right )^2} \, dx\\ &=\frac {5}{4-x^4+\log \left (\frac {x^3}{16-e^{2/3} x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 30, normalized size = 1.03 \begin {gather*} \frac {5}{4-x^4+\log \left (\frac {x^3}{16-e^{2/3} x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 27, normalized size = 0.93 \begin {gather*} -\frac {5}{x^{4} - \log \left (-\frac {x^{3}}{x^{2} e^{\frac {2}{3}} - 16}\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 27, normalized size = 0.93 \begin {gather*} -\frac {5}{x^{4} - \log \left (-\frac {x^{3}}{x^{2} e^{\frac {2}{3}} - 16}\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 28, normalized size = 0.97
method | result | size |
risch | \(-\frac {5}{x^{4}-\ln \left (-\frac {x^{3}}{x^{2} {\mathrm e}^{\frac {2}{3}}-16}\right )-4}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 20.98, size = 27, normalized size = 0.93 \begin {gather*} \frac {5}{\ln \left (-\frac {x^3}{x^2\,{\mathrm {e}}^{2/3}-16}\right )-x^4+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 22, normalized size = 0.76 \begin {gather*} \frac {5}{- x^{4} + \log {\left (- \frac {x^{3}}{x^{2} e^{\frac {2}{3}} - 16} \right )} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________