Optimal. Leaf size=23 \[ \frac {2 x}{3 \left (e^{16}+x\right )}+\log \left (\frac {4 e^x}{5}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {15 e^{32}+40 e^{16} x+15 x^2+e^x \left (12 e^{32}+12 x^2+e^{16} (8+24 x)\right )}{15 e^{32} x+30 e^{16} x^2+15 x^3+e^x \left (12 e^{32}+24 e^{16} x+12 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15 e^{32}+40 e^{16} x+15 x^2+e^x \left (12 e^{32}+12 x^2+e^{16} (8+24 x)\right )}{3 \left (e^{16}+x\right )^2 \left (4 e^x+5 x\right )} \, dx\\ &=\frac {1}{3} \int \frac {15 e^{32}+40 e^{16} x+15 x^2+e^x \left (12 e^{32}+12 x^2+e^{16} (8+24 x)\right )}{\left (e^{16}+x\right )^2 \left (4 e^x+5 x\right )} \, dx\\ &=\frac {1}{3} \int \left (-\frac {15 (-1+x)}{4 e^x+5 x}+\frac {e^{16} \left (2+3 e^{16}\right )+6 e^{16} x+3 x^2}{\left (e^{16}+x\right )^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^{16} \left (2+3 e^{16}\right )+6 e^{16} x+3 x^2}{\left (e^{16}+x\right )^2} \, dx-5 \int \frac {-1+x}{4 e^x+5 x} \, dx\\ &=\frac {1}{3} \int \left (3+\frac {2 e^{16}}{\left (e^{16}+x\right )^2}\right ) \, dx-5 \int \left (-\frac {1}{4 e^x+5 x}+\frac {x}{4 e^x+5 x}\right ) \, dx\\ &=x-\frac {2 e^{16}}{3 \left (e^{16}+x\right )}+5 \int \frac {1}{4 e^x+5 x} \, dx-5 \int \frac {x}{4 e^x+5 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 29, normalized size = 1.26 \begin {gather*} \frac {1}{3} \left (-\frac {2 e^{16}}{e^{16}+x}+3 \log \left (4 e^x+5 x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 28, normalized size = 1.22 \begin {gather*} \frac {3 \, {\left (x + e^{16}\right )} \log \left (5 \, x + 4 \, e^{x}\right ) - 2 \, e^{16}}{3 \, {\left (x + e^{16}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 38, normalized size = 1.65 \begin {gather*} \frac {3 \, x \log \left (5 \, x + 4 \, e^{x}\right ) + 3 \, e^{16} \log \left (5 \, x + 4 \, e^{x}\right ) - 2 \, e^{16}}{3 \, {\left (x + e^{16}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 19, normalized size = 0.83
method | result | size |
risch | \(-\frac {2 \,{\mathrm e}^{16}}{3 \left (x +{\mathrm e}^{16}\right )}+\ln \left (\frac {5 x}{4}+{\mathrm e}^{x}\right )\) | \(19\) |
norman | \(-\frac {2 \,{\mathrm e}^{16}}{3 \left (x +{\mathrm e}^{16}\right )}+\ln \left (5 x +4 \,{\mathrm e}^{x}\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 18, normalized size = 0.78 \begin {gather*} -\frac {2 \, e^{16}}{3 \, {\left (x + e^{16}\right )}} + \log \left (\frac {5}{4} \, x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.39, size = 21, normalized size = 0.91 \begin {gather*} \ln \left (x+\frac {4\,{\mathrm {e}}^x}{5}\right )+\frac {2\,x}{3\,x+3\,{\mathrm {e}}^{16}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 22, normalized size = 0.96 \begin {gather*} \log {\left (\frac {5 x}{4} + e^{x} \right )} - \frac {2 e^{16}}{3 x + 3 e^{16}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________