Optimal. Leaf size=27 \[ \log \left (-x+\left (\left (e^{15+x}+2 x\right )^2+\log (2)+\log \left (3 x^2\right )\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [F] time = 1.64, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-x+4 e^{60+4 x} x+16 x^2+64 x^4+e^{45+3 x} \left (8 x+24 x^2\right )+\left (4+16 x^2\right ) \log (2)+e^{30+2 x} \left (4+48 x^2+48 x^3+4 x \log (2)\right )+e^{15+x} \left (16 x+96 x^3+32 x^4+\left (8 x+8 x^2\right ) \log (2)\right )+\left (4+4 e^{30+2 x} x+16 x^2+e^{15+x} \left (8 x+8 x^2\right )\right ) \log \left (3 x^2\right )}{e^{60+4 x} x-x^2+8 e^{45+3 x} x^2+16 x^5+8 x^3 \log (2)+x \log ^2(2)+e^{30+2 x} \left (24 x^3+2 x \log (2)\right )+e^{15+x} \left (32 x^4+8 x^2 \log (2)\right )+\left (2 e^{30+2 x} x+8 e^{15+x} x^2+8 x^3+2 x \log (2)\right ) \log \left (3 x^2\right )+x \log ^2\left (3 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.02, size = 105, normalized size = 3.89 \begin {gather*} \log \left (16 \, x^{4} + 8 \, x^{2} \log \relax (2) + 8 \, x e^{\left (3 \, x + 45\right )} + 2 \, {\left (12 \, x^{2} + \log \relax (2)\right )} e^{\left (2 \, x + 30\right )} + 8 \, {\left (4 \, x^{3} + x \log \relax (2)\right )} e^{\left (x + 15\right )} + \log \relax (2)^{2} + 2 \, {\left (4 \, x^{2} + 4 \, x e^{\left (x + 15\right )} + e^{\left (2 \, x + 30\right )} + \log \relax (2)\right )} \log \left (3 \, x^{2}\right ) + \log \left (3 \, x^{2}\right )^{2} - x + e^{\left (4 \, x + 60\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.90, size = 173, normalized size = 6.41 \begin {gather*} \log \left (16 \, x^{4} + 32 \, x^{3} e^{\left (x + 15\right )} + 24 \, x^{2} e^{\left (2 \, x + 30\right )} + 8 \, x^{2} \log \relax (3) + 8 \, x e^{\left (x + 15\right )} \log \relax (3) + 8 \, x^{2} \log \relax (2) + 8 \, x e^{\left (x + 15\right )} \log \relax (2) + 16 \, x^{2} \log \left (x \mathrm {sgn}\relax (x)\right ) + 16 \, x e^{\left (x + 15\right )} \log \left (x \mathrm {sgn}\relax (x)\right ) + 8 \, x e^{\left (3 \, x + 45\right )} + 2 \, e^{\left (2 \, x + 30\right )} \log \relax (3) + \log \relax (3)^{2} + 2 \, e^{\left (2 \, x + 30\right )} \log \relax (2) + 2 \, \log \relax (3) \log \relax (2) + \log \relax (2)^{2} + 4 \, e^{\left (2 \, x + 30\right )} \log \left (x \mathrm {sgn}\relax (x)\right ) + 4 \, \log \relax (3) \log \left (x \mathrm {sgn}\relax (x)\right ) + 4 \, \log \relax (2) \log \left (x \mathrm {sgn}\relax (x)\right ) + 4 \, \log \left (x \mathrm {sgn}\relax (x)\right )^{2} - x + e^{\left (4 \, x + 60\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.35, size = 592, normalized size = 21.93
method | result | size |
risch | \(\ln \left (-\frac {x}{4}+2 x^{2} \ln \relax (3)+\frac {\ln \relax (3)^{2}}{4}+\frac {\ln \relax (2)^{2}}{4}+\ln \relax (x )^{2}+4 x^{4}+2 x^{2} \ln \relax (2)-i \pi \,x^{2} \mathrm {csgn}\left (i x^{2}\right )^{3}-\frac {i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{2 x +30}}{4}-\frac {i \pi \ln \relax (2) \mathrm {csgn}\left (i x^{2}\right )^{3}}{4}-\frac {i \ln \relax (3) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{4}+\frac {\ln \relax (2) \ln \relax (3)}{2}+\frac {{\mathrm e}^{4 x +60}}{4}+6 \,{\mathrm e}^{2 x +30} x^{2}+\frac {\ln \relax (3) {\mathrm e}^{2 x +30}}{2}+\frac {\ln \relax (2) {\mathrm e}^{2 x +30}}{2}+2 \,{\mathrm e}^{3 x +45} x -i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{x +15}+2 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{x +15}+8 \,{\mathrm e}^{x +15} x^{3}-\frac {\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}}{16}+\left (4 x^{2}-\frac {i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}}{2}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\ln \relax (3)+4 x \,{\mathrm e}^{x +15}+{\mathrm e}^{2 x +30}+\ln \relax (2)\right ) \ln \relax (x )+\frac {\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{5} \mathrm {csgn}\left (i x \right )}{4}-\frac {3 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (i x \right )^{2}}{8}+\frac {\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i x \right )^{3}}{4}-\frac {\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )^{4}}{16}+2 \,{\mathrm e}^{x +15} \ln \relax (2) x -\frac {i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{2 x +30}}{4}+\frac {i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{2 x +30}}{2}+\frac {i \pi \ln \relax (2) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}}{2}-\frac {i \ln \relax (3) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{4}+\frac {i \ln \relax (3) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}}{2}-i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{x +15}+2 \,{\mathrm e}^{x +15} \ln \relax (3) x -\frac {i \pi \ln \relax (2) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{4}-i \pi \,x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )\) | \(592\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 128, normalized size = 4.74 \begin {gather*} \log \left ({\left (16 \, x^{4} + 8 \, x^{2} {\left (\log \relax (3) + \log \relax (2)\right )} + 2 \, {\left (12 \, x^{2} e^{30} + {\left (\log \relax (3) + \log \relax (2)\right )} e^{30} + 2 \, e^{30} \log \relax (x)\right )} e^{\left (2 \, x\right )} + 8 \, x e^{\left (3 \, x + 45\right )} + 8 \, {\left (4 \, x^{3} e^{15} + x {\left (\log \relax (3) + \log \relax (2)\right )} e^{15} + 2 \, x e^{15} \log \relax (x)\right )} e^{x} + \log \relax (3)^{2} + 2 \, \log \relax (3) \log \relax (2) + \log \relax (2)^{2} + 4 \, {\left (4 \, x^{2} + \log \relax (3) + \log \relax (2)\right )} \log \relax (x) + 4 \, \log \relax (x)^{2} - x + e^{\left (4 \, x + 60\right )}\right )} e^{\left (-60\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{2\,x+30}\,\left (48\,x^3+48\,x^2+4\,\ln \relax (2)\,x+4\right )-x+\ln \left (3\,x^2\right )\,\left ({\mathrm {e}}^{x+15}\,\left (8\,x^2+8\,x\right )+4\,x\,{\mathrm {e}}^{2\,x+30}+16\,x^2+4\right )+\ln \relax (2)\,\left (16\,x^2+4\right )+{\mathrm {e}}^{3\,x+45}\,\left (24\,x^2+8\,x\right )+4\,x\,{\mathrm {e}}^{4\,x+60}+{\mathrm {e}}^{x+15}\,\left (16\,x+\ln \relax (2)\,\left (8\,x^2+8\,x\right )+96\,x^3+32\,x^4\right )+16\,x^2+64\,x^4}{x\,{\mathrm {e}}^{4\,x+60}+x\,{\ln \relax (2)}^2+8\,x^3\,\ln \relax (2)+\ln \left (3\,x^2\right )\,\left (2\,x\,\ln \relax (2)+2\,x\,{\mathrm {e}}^{2\,x+30}+8\,x^2\,{\mathrm {e}}^{x+15}+8\,x^3\right )+8\,x^2\,{\mathrm {e}}^{3\,x+45}+{\mathrm {e}}^{2\,x+30}\,\left (24\,x^3+2\,\ln \relax (2)\,x\right )+{\mathrm {e}}^{x+15}\,\left (32\,x^4+8\,\ln \relax (2)\,x^2\right )-x^2+16\,x^5+x\,{\ln \left (3\,x^2\right )}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.67, size = 122, normalized size = 4.52 \begin {gather*} \log {\left (16 x^{4} + 8 x^{2} \log {\left (3 x^{2} \right )} + 8 x^{2} \log {\relax (2 )} + 8 x e^{3 x + 45} - x + \left (24 x^{2} + 2 \log {\left (3 x^{2} \right )} + 2 \log {\relax (2 )}\right ) e^{2 x + 30} + \left (32 x^{3} + 8 x \log {\left (3 x^{2} \right )} + 8 x \log {\relax (2 )}\right ) e^{x + 15} + e^{4 x + 60} + \log {\left (3 x^{2} \right )}^{2} + 2 \log {\relax (2 )} \log {\left (3 x^{2} \right )} + \log {\relax (2 )}^{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________