Optimal. Leaf size=35 \[ e^{\frac {-x+x^2+(2+x)^2}{4 e^2+x}}+\frac {3 (5-x)}{x} \]
________________________________________________________________________________________
Rubi [F] time = 1.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-240 e^4-120 e^2 x-15 x^2+e^{\frac {4+3 x+2 x^2}{4 e^2+x}} \left (-4 x^2+2 x^4+e^2 \left (12 x^2+16 x^3\right )\right )}{16 e^4 x^2+8 e^2 x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-240 e^4-120 e^2 x-15 x^2+e^{\frac {4+3 x+2 x^2}{4 e^2+x}} \left (-4 x^2+2 x^4+e^2 \left (12 x^2+16 x^3\right )\right )}{x^2 \left (16 e^4+8 e^2 x+x^2\right )} \, dx\\ &=\int \frac {-240 e^4-120 e^2 x-15 x^2+e^{\frac {4+3 x+2 x^2}{4 e^2+x}} \left (-4 x^2+2 x^4+e^2 \left (12 x^2+16 x^3\right )\right )}{x^2 \left (4 e^2+x\right )^2} \, dx\\ &=\int \left (-\frac {15}{x^2}+\frac {2 e^{\frac {4+3 x+2 x^2}{4 e^2+x}} \left (-2 \left (1-3 e^2\right )+8 e^2 x+x^2\right )}{\left (4 e^2+x\right )^2}\right ) \, dx\\ &=\frac {15}{x}+2 \int \frac {e^{\frac {4+3 x+2 x^2}{4 e^2+x}} \left (-2 \left (1-3 e^2\right )+8 e^2 x+x^2\right )}{\left (4 e^2+x\right )^2} \, dx\\ &=\frac {15}{x}+2 \int \left (e^{\frac {4+3 x+2 x^2}{4 e^2+x}}-\frac {2 e^{\frac {4+3 x+2 x^2}{4 e^2+x}} \left (1-3 e^2+8 e^4\right )}{\left (4 e^2+x\right )^2}\right ) \, dx\\ &=\frac {15}{x}+2 \int e^{\frac {4+3 x+2 x^2}{4 e^2+x}} \, dx-\left (4 \left (1-3 e^2+8 e^4\right )\right ) \int \frac {e^{\frac {4+3 x+2 x^2}{4 e^2+x}}}{\left (4 e^2+x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 28, normalized size = 0.80 \begin {gather*} e^{\frac {4+3 x+2 x^2}{4 e^2+x}}+\frac {15}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 28, normalized size = 0.80 \begin {gather*} \frac {x e^{\left (\frac {2 \, x^{2} + 3 \, x + 4}{x + 4 \, e^{2}}\right )} + 15}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 52, normalized size = 1.49 \begin {gather*} \frac {{\left (x e^{\left ({\left (2 \, e^{2} + 1\right )} e^{\left (-2\right )} + \frac {2 \, x^{2} e^{2} + 3 \, x e^{2} - x}{x e^{2} + 4 \, e^{4}}\right )} + 15 \, e^{2}\right )} e^{\left (-2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 27, normalized size = 0.77
method | result | size |
risch | \(\frac {15}{x}+{\mathrm e}^{\frac {2 x^{2}+3 x +4}{4 \,{\mathrm e}^{2}+x}}\) | \(27\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {2 x^{2}+3 x +4}{4 \,{\mathrm e}^{2}+x}}+15 x +60 \,{\mathrm e}^{2}+4 x \,{\mathrm e}^{2} {\mathrm e}^{\frac {2 x^{2}+3 x +4}{4 \,{\mathrm e}^{2}+x}}}{x \left (4 \,{\mathrm e}^{2}+x \right )}\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 132, normalized size = 3.77 \begin {gather*} -\frac {15}{2} \, {\left (e^{\left (-6\right )} \log \left (x + 4 \, e^{2}\right ) - e^{\left (-6\right )} \log \relax (x) - \frac {4 \, {\left (x + 2 \, e^{2}\right )}}{x^{2} e^{4} + 4 \, x e^{6}}\right )} e^{4} + \frac {15}{2} \, {\left (e^{\left (-4\right )} \log \left (x + 4 \, e^{2}\right ) - e^{\left (-4\right )} \log \relax (x) - \frac {4}{x e^{2} + 4 \, e^{4}}\right )} e^{2} + \frac {15}{x + 4 \, e^{2}} + e^{\left (2 \, x + \frac {32 \, e^{4}}{x + 4 \, e^{2}} - \frac {12 \, e^{2}}{x + 4 \, e^{2}} + \frac {4}{x + 4 \, e^{2}} - 8 \, e^{2} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.63, size = 44, normalized size = 1.26 \begin {gather*} \frac {15}{x}+{\mathrm {e}}^{\frac {3\,x}{x+4\,{\mathrm {e}}^2}}\,{\mathrm {e}}^{\frac {2\,x^2}{x+4\,{\mathrm {e}}^2}}\,{\mathrm {e}}^{\frac {4}{x+4\,{\mathrm {e}}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 20, normalized size = 0.57 \begin {gather*} e^{\frac {2 x^{2} + 3 x + 4}{x + 4 e^{2}}} + \frac {15}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________