Optimal. Leaf size=38 \[ e^5 \left (4+\left (2-e^{3 x}+\frac {2}{x}\right ) \left (-2 e^{3-x}+\frac {x^2}{25}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 59, normalized size of antiderivative = 1.55, number of steps used = 17, number of rules used = 8, integrand size = 75, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {12, 14, 2194, 2196, 2176, 2199, 2177, 2178} \begin {gather*} -\frac {1}{25} e^{3 x+5} x^2-4 e^{8-x}+2 e^{2 x+8}+\frac {1}{50} e^5 (2 x+1)^2-\frac {4 e^{8-x}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2196
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \frac {e^{8-x} \left (100+100 x+100 x^2\right )+e^5 \left (2 x^2+4 x^3\right )+e^{3 x} \left (100 e^{8-x} x^2+e^5 \left (-2 x^3-3 x^4\right )\right )}{x^2} \, dx\\ &=\frac {1}{25} \int \left (100 e^{8+2 x}+2 e^5 (1+2 x)-e^{5+3 x} x (2+3 x)+\frac {100 e^{8-x} \left (1+x+x^2\right )}{x^2}\right ) \, dx\\ &=\frac {1}{50} e^5 (1+2 x)^2-\frac {1}{25} \int e^{5+3 x} x (2+3 x) \, dx+4 \int e^{8+2 x} \, dx+4 \int \frac {e^{8-x} \left (1+x+x^2\right )}{x^2} \, dx\\ &=2 e^{8+2 x}+\frac {1}{50} e^5 (1+2 x)^2-\frac {1}{25} \int \left (2 e^{5+3 x} x+3 e^{5+3 x} x^2\right ) \, dx+4 \int \left (e^{8-x}+\frac {e^{8-x}}{x^2}+\frac {e^{8-x}}{x}\right ) \, dx\\ &=2 e^{8+2 x}+\frac {1}{50} e^5 (1+2 x)^2-\frac {2}{25} \int e^{5+3 x} x \, dx-\frac {3}{25} \int e^{5+3 x} x^2 \, dx+4 \int e^{8-x} \, dx+4 \int \frac {e^{8-x}}{x^2} \, dx+4 \int \frac {e^{8-x}}{x} \, dx\\ &=-4 e^{8-x}+2 e^{8+2 x}-\frac {4 e^{8-x}}{x}-\frac {2}{75} e^{5+3 x} x-\frac {1}{25} e^{5+3 x} x^2+\frac {1}{50} e^5 (1+2 x)^2+4 e^8 \text {Ei}(-x)+\frac {2}{75} \int e^{5+3 x} \, dx+\frac {2}{25} \int e^{5+3 x} x \, dx-4 \int \frac {e^{8-x}}{x} \, dx\\ &=-4 e^{8-x}+2 e^{8+2 x}+\frac {2}{225} e^{5+3 x}-\frac {4 e^{8-x}}{x}-\frac {1}{25} e^{5+3 x} x^2+\frac {1}{50} e^5 (1+2 x)^2-\frac {2}{75} \int e^{5+3 x} \, dx\\ &=-4 e^{8-x}+2 e^{8+2 x}-\frac {4 e^{8-x}}{x}-\frac {1}{25} e^{5+3 x} x^2+\frac {1}{50} e^5 (1+2 x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 38, normalized size = 1.00 \begin {gather*} -\frac {e^{5-x} \left (-2+\left (-2+e^{3 x}\right ) x\right ) \left (-50 e^3+e^x x^2\right )}{25 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 53, normalized size = 1.39 \begin {gather*} -\frac {{\left (x^{3} e^{29} - 50 \, x e^{\left (-x + 32\right )} - 2 \, {\left (x^{3} + x^{2}\right )} e^{\left (-3 \, x + 29\right )} + 100 \, {\left (x + 1\right )} e^{\left (-4 \, x + 32\right )}\right )} e^{\left (3 \, x - 24\right )}}{25 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 57, normalized size = 1.50 \begin {gather*} \frac {2 \, x^{3} e^{5} - x^{3} e^{\left (3 \, x + 5\right )} + 2 \, x^{2} e^{5} + 50 \, x e^{\left (2 \, x + 8\right )} - 100 \, x e^{\left (-x + 8\right )} - 100 \, e^{\left (-x + 8\right )}}{25 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 47, normalized size = 1.24
method | result | size |
risch | \(\frac {2 x^{2} {\mathrm e}^{5}}{25}+\frac {2 x \,{\mathrm e}^{5}}{25}-\frac {x^{2} {\mathrm e}^{3 x +5}}{25}+2 \,{\mathrm e}^{2 x +8}-\frac {4 \left (x +1\right ) {\mathrm e}^{8-x}}{x}\) | \(47\) |
norman | \(\frac {\left (-4 \,{\mathrm e}^{3} {\mathrm e}^{5}-4 x \,{\mathrm e}^{3} {\mathrm e}^{5}+\frac {2 x^{2} {\mathrm e}^{5} {\mathrm e}^{x}}{25}+\frac {2 x^{3} {\mathrm e}^{5} {\mathrm e}^{x}}{25}-\frac {x^{3} {\mathrm e}^{5} {\mathrm e}^{4 x}}{25}+2 x \,{\mathrm e}^{3} {\mathrm e}^{5} {\mathrm e}^{3 x}\right ) {\mathrm e}^{-x}}{x}\) | \(63\) |
default | \(\frac {2 x^{2} {\mathrm e}^{5}}{25}-\frac {2 \,{\mathrm e}^{5} \left (\frac {x \,{\mathrm e}^{3 x}}{3}-\frac {{\mathrm e}^{3 x}}{9}\right )}{25}-\frac {3 \,{\mathrm e}^{5} \left (\frac {x^{2} {\mathrm e}^{3 x}}{3}-\frac {2 x \,{\mathrm e}^{3 x}}{9}+\frac {2 \,{\mathrm e}^{3 x}}{27}\right )}{25}-4 \,{\mathrm e}^{5} {\mathrm e}^{3} {\mathrm e}^{-x}+2 \,{\mathrm e}^{2 x} {\mathrm e}^{5} {\mathrm e}^{3}+4 \,{\mathrm e}^{3} {\mathrm e}^{5} \left (-\frac {{\mathrm e}^{-x}}{x}+\expIntegralEi \left (1, x\right )\right )-4 \,{\mathrm e}^{3} {\mathrm e}^{5} \expIntegralEi \left (1, x\right )+\frac {2 x \,{\mathrm e}^{5}}{25}\) | \(107\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 83, normalized size = 2.18 \begin {gather*} \frac {2}{25} \, x^{2} e^{5} + 4 \, {\rm Ei}\left (-x\right ) e^{8} + \frac {2}{25} \, x e^{5} - \frac {1}{225} \, {\left (9 \, x^{2} e^{5} - 6 \, x e^{5} + 2 \, e^{5}\right )} e^{\left (3 \, x\right )} - \frac {2}{225} \, {\left (3 \, x e^{5} - e^{5}\right )} e^{\left (3 \, x\right )} - 4 \, e^{8} \Gamma \left (-1, x\right ) + 2 \, e^{\left (2 \, x + 8\right )} - 4 \, e^{\left (-x + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.94, size = 53, normalized size = 1.39 \begin {gather*} 2\,{\mathrm {e}}^{2\,x+8}+\frac {2\,x\,{\mathrm {e}}^5}{25}+\frac {2\,x^2\,{\mathrm {e}}^5}{25}-\frac {x^2\,{\mathrm {e}}^{3\,x+5}}{25}-\frac {{\mathrm {e}}^{3-x}\,\left (4\,{\mathrm {e}}^5+4\,x\,{\mathrm {e}}^5\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.24, size = 70, normalized size = 1.84 \begin {gather*} \frac {2 x^{2} e^{5}}{25} + \frac {2 x e^{5}}{25} + \frac {- x^{3} e^{5} e^{3 x} + 50 x e^{8} \left (e^{3 x}\right )^{\frac {2}{3}} + \frac {- 100 x e^{8} - 100 e^{8}}{\sqrt [3]{e^{3 x}}}}{25 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________