Optimal. Leaf size=22 \[ 15+\frac {x^4}{16 \left (-\frac {5}{3}+x\right )^2 \log ^2(-2+x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {45 x^4-27 x^5+\left (180 x^3-144 x^4+27 x^5\right ) \log (-2+x)}{\left (2000-4600 x+3960 x^2-1512 x^3+216 x^4\right ) \log ^3(-2+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {9 x^4}{8 (-2+x) (-5+3 x)^2 \log ^3(-2+x)}+\frac {9 x^3 (-10+3 x)}{8 (-5+3 x)^3 \log ^2(-2+x)}\right ) \, dx\\ &=-\left (\frac {9}{8} \int \frac {x^4}{(-2+x) (-5+3 x)^2 \log ^3(-2+x)} \, dx\right )+\frac {9}{8} \int \frac {x^3 (-10+3 x)}{(-5+3 x)^3 \log ^2(-2+x)} \, dx\\ &=-\left (\frac {9}{8} \int \left (\frac {16}{27 \log ^3(-2+x)}+\frac {16}{(-2+x) \log ^3(-2+x)}+\frac {x}{9 \log ^3(-2+x)}-\frac {625}{27 (-5+3 x)^2 \log ^3(-2+x)}-\frac {125}{3 (-5+3 x) \log ^3(-2+x)}\right ) \, dx\right )+\frac {9}{8} \int \left (\frac {5}{27 \log ^2(-2+x)}+\frac {x}{9 \log ^2(-2+x)}-\frac {625}{27 (-5+3 x)^3 \log ^2(-2+x)}-\frac {250}{27 (-5+3 x)^2 \log ^2(-2+x)}\right ) \, dx\\ &=-\left (\frac {1}{8} \int \frac {x}{\log ^3(-2+x)} \, dx\right )+\frac {1}{8} \int \frac {x}{\log ^2(-2+x)} \, dx+\frac {5}{24} \int \frac {1}{\log ^2(-2+x)} \, dx-\frac {2}{3} \int \frac {1}{\log ^3(-2+x)} \, dx-\frac {125}{12} \int \frac {1}{(-5+3 x)^2 \log ^2(-2+x)} \, dx-18 \int \frac {1}{(-2+x) \log ^3(-2+x)} \, dx+\frac {625}{24} \int \frac {1}{(-5+3 x)^2 \log ^3(-2+x)} \, dx-\frac {625}{24} \int \frac {1}{(-5+3 x)^3 \log ^2(-2+x)} \, dx+\frac {375}{8} \int \frac {1}{(-5+3 x) \log ^3(-2+x)} \, dx\\ &=-\frac {(2-x) x}{16 \log ^2(-2+x)}+\frac {(2-x) x}{8 \log (-2+x)}+\frac {1}{8} \int \frac {1}{\log ^2(-2+x)} \, dx-\frac {1}{8} \int \frac {x}{\log ^2(-2+x)} \, dx+\frac {5}{24} \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,-2+x\right )-\frac {1}{4} \int \frac {1}{\log (-2+x)} \, dx+\frac {1}{4} \int \frac {x}{\log (-2+x)} \, dx-\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{\log ^3(x)} \, dx,x,-2+x\right )-\frac {125}{12} \int \frac {1}{(-5+3 x)^2 \log ^2(-2+x)} \, dx-18 \operatorname {Subst}\left (\int \frac {1}{x \log ^3(x)} \, dx,x,-2+x\right )+\frac {625}{24} \int \frac {1}{(-5+3 x)^2 \log ^3(-2+x)} \, dx-\frac {625}{24} \int \frac {1}{(-5+3 x)^3 \log ^2(-2+x)} \, dx+\frac {375}{8} \int \frac {1}{(-5+3 x) \log ^3(-2+x)} \, dx\\ &=-\frac {2-x}{3 \log ^2(-2+x)}-\frac {(2-x) x}{16 \log ^2(-2+x)}+\frac {5 (2-x)}{24 \log (-2+x)}+\frac {1}{8} \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,-2+x\right )+\frac {5}{24} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-2+x\right )+\frac {1}{4} \int \left (\frac {2}{\log (-2+x)}+\frac {-2+x}{\log (-2+x)}\right ) \, dx+\frac {1}{4} \int \frac {1}{\log (-2+x)} \, dx-\frac {1}{4} \int \frac {x}{\log (-2+x)} \, dx-\frac {1}{4} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-2+x\right )-\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,-2+x\right )-\frac {125}{12} \int \frac {1}{(-5+3 x)^2 \log ^2(-2+x)} \, dx-18 \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log (-2+x)\right )+\frac {625}{24} \int \frac {1}{(-5+3 x)^2 \log ^3(-2+x)} \, dx-\frac {625}{24} \int \frac {1}{(-5+3 x)^3 \log ^2(-2+x)} \, dx+\frac {375}{8} \int \frac {1}{(-5+3 x) \log ^3(-2+x)} \, dx\\ &=\frac {9}{\log ^2(-2+x)}-\frac {2-x}{3 \log ^2(-2+x)}-\frac {(2-x) x}{16 \log ^2(-2+x)}-\frac {\text {li}(-2+x)}{24}+\frac {1}{8} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-2+x\right )-\frac {1}{4} \int \left (\frac {2}{\log (-2+x)}+\frac {-2+x}{\log (-2+x)}\right ) \, dx+\frac {1}{4} \int \frac {-2+x}{\log (-2+x)} \, dx+\frac {1}{4} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-2+x\right )-\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-2+x\right )+\frac {1}{2} \int \frac {1}{\log (-2+x)} \, dx-\frac {125}{12} \int \frac {1}{(-5+3 x)^2 \log ^2(-2+x)} \, dx+\frac {625}{24} \int \frac {1}{(-5+3 x)^2 \log ^3(-2+x)} \, dx-\frac {625}{24} \int \frac {1}{(-5+3 x)^3 \log ^2(-2+x)} \, dx+\frac {375}{8} \int \frac {1}{(-5+3 x) \log ^3(-2+x)} \, dx\\ &=\frac {9}{\log ^2(-2+x)}-\frac {2-x}{3 \log ^2(-2+x)}-\frac {(2-x) x}{16 \log ^2(-2+x)}-\frac {1}{4} \int \frac {-2+x}{\log (-2+x)} \, dx+\frac {1}{4} \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,-2+x\right )-\frac {1}{2} \int \frac {1}{\log (-2+x)} \, dx+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-2+x\right )-\frac {125}{12} \int \frac {1}{(-5+3 x)^2 \log ^2(-2+x)} \, dx+\frac {625}{24} \int \frac {1}{(-5+3 x)^2 \log ^3(-2+x)} \, dx-\frac {625}{24} \int \frac {1}{(-5+3 x)^3 \log ^2(-2+x)} \, dx+\frac {375}{8} \int \frac {1}{(-5+3 x) \log ^3(-2+x)} \, dx\\ &=\frac {9}{\log ^2(-2+x)}-\frac {2-x}{3 \log ^2(-2+x)}-\frac {(2-x) x}{16 \log ^2(-2+x)}+\frac {\text {li}(-2+x)}{2}+\frac {1}{4} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (-2+x)\right )-\frac {1}{4} \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,-2+x\right )-\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-2+x\right )-\frac {125}{12} \int \frac {1}{(-5+3 x)^2 \log ^2(-2+x)} \, dx+\frac {625}{24} \int \frac {1}{(-5+3 x)^2 \log ^3(-2+x)} \, dx-\frac {625}{24} \int \frac {1}{(-5+3 x)^3 \log ^2(-2+x)} \, dx+\frac {375}{8} \int \frac {1}{(-5+3 x) \log ^3(-2+x)} \, dx\\ &=\frac {1}{4} \text {Ei}(2 \log (-2+x))+\frac {9}{\log ^2(-2+x)}-\frac {2-x}{3 \log ^2(-2+x)}-\frac {(2-x) x}{16 \log ^2(-2+x)}-\frac {1}{4} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (-2+x)\right )-\frac {125}{12} \int \frac {1}{(-5+3 x)^2 \log ^2(-2+x)} \, dx+\frac {625}{24} \int \frac {1}{(-5+3 x)^2 \log ^3(-2+x)} \, dx-\frac {625}{24} \int \frac {1}{(-5+3 x)^3 \log ^2(-2+x)} \, dx+\frac {375}{8} \int \frac {1}{(-5+3 x) \log ^3(-2+x)} \, dx\\ &=\frac {9}{\log ^2(-2+x)}-\frac {2-x}{3 \log ^2(-2+x)}-\frac {(2-x) x}{16 \log ^2(-2+x)}-\frac {125}{12} \int \frac {1}{(-5+3 x)^2 \log ^2(-2+x)} \, dx+\frac {625}{24} \int \frac {1}{(-5+3 x)^2 \log ^3(-2+x)} \, dx-\frac {625}{24} \int \frac {1}{(-5+3 x)^3 \log ^2(-2+x)} \, dx+\frac {375}{8} \int \frac {1}{(-5+3 x) \log ^3(-2+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 22, normalized size = 1.00 \begin {gather*} \frac {9 x^4}{16 (1+3 (-2+x))^2 \log ^2(-2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 23, normalized size = 1.05 \begin {gather*} \frac {9 \, x^{4}}{16 \, {\left (9 \, x^{2} - 30 \, x + 25\right )} \log \left (x - 2\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 36, normalized size = 1.64 \begin {gather*} \frac {9 \, x^{4}}{16 \, {\left (9 \, x^{2} \log \left (x - 2\right )^{2} - 30 \, x \log \left (x - 2\right )^{2} + 25 \, \log \left (x - 2\right )^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 19, normalized size = 0.86
method | result | size |
norman | \(\frac {9 x^{4}}{16 \left (3 x -5\right )^{2} \ln \left (x -2\right )^{2}}\) | \(19\) |
risch | \(\frac {9 x^{4}}{16 \left (3 x -5\right )^{2} \ln \left (x -2\right )^{2}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 23, normalized size = 1.05 \begin {gather*} \frac {9 \, x^{4}}{16 \, {\left (9 \, x^{2} - 30 \, x + 25\right )} \log \left (x - 2\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.47, size = 158, normalized size = 7.18 \begin {gather*} \frac {\frac {9\,x^4}{16\,{\left (3\,x-5\right )}^2}-\frac {9\,x^3\,\ln \left (x-2\right )\,\left (3\,x-10\right )\,\left (x-2\right )}{16\,{\left (3\,x-5\right )}^3}}{{\ln \left (x-2\right )}^2}-\frac {\frac {9\,\left (10\,x^3-3\,x^4\right )\,\left (x-2\right )}{16\,{\left (3\,x-5\right )}^3}-\frac {9\,\ln \left (x-2\right )\,\left (x-2\right )\,\left (-18\,x^5+123\,x^4-320\,x^3+300\,x^2\right )}{16\,{\left (3\,x-5\right )}^4}}{\ln \left (x-2\right )}-\frac {13\,x}{48}+\frac {x^2}{8}+\frac {\frac {125\,x^3}{216}-\frac {1625\,x^2}{648}+\frac {11125\,x}{3888}-\frac {625}{1944}}{x^4-\frac {20\,x^3}{3}+\frac {50\,x^2}{3}-\frac {500\,x}{27}+\frac {625}{81}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.91 \begin {gather*} \frac {9 x^{4}}{\left (144 x^{2} - 480 x + 400\right ) \log {\left (x - 2 \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________