Optimal. Leaf size=30 \[ \frac {3}{2} \left (x-\log \left (x \left (-1+\frac {4}{x^2 \left (-e^{\log ^2(x)}+x\right )^2}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {36 x+12 x^2+3 x^5-3 x^6+e^{3 \log ^2(x)} \left (-3 x^2+3 x^3\right )+e^{2 \log ^2(x)} \left (9 x^3-9 x^4\right )+e^{\log ^2(x)} \left (-12-12 x-9 x^4+9 x^5-48 \log (x)\right )}{8 x^2+2 e^{3 \log ^2(x)} x^3-6 e^{2 \log ^2(x)} x^4-2 x^6+e^{\log ^2(x)} \left (-8 x+6 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-36 x-12 x^2-3 x^5+3 x^6-e^{3 \log ^2(x)} \left (-3 x^2+3 x^3\right )-e^{2 \log ^2(x)} \left (9 x^3-9 x^4\right )-e^{\log ^2(x)} \left (-12-12 x-9 x^4+9 x^5-48 \log (x)\right )}{2 x \left (4 e^{\log ^2(x)}-4 x-e^{3 \log ^2(x)} x^2+3 e^{2 \log ^2(x)} x^3-3 e^{\log ^2(x)} x^4+x^5\right )} \, dx\\ &=\frac {1}{2} \int \frac {-36 x-12 x^2-3 x^5+3 x^6-e^{3 \log ^2(x)} \left (-3 x^2+3 x^3\right )-e^{2 \log ^2(x)} \left (9 x^3-9 x^4\right )-e^{\log ^2(x)} \left (-12-12 x-9 x^4+9 x^5-48 \log (x)\right )}{x \left (4 e^{\log ^2(x)}-4 x-e^{3 \log ^2(x)} x^2+3 e^{2 \log ^2(x)} x^3-3 e^{\log ^2(x)} x^4+x^5\right )} \, dx\\ &=\frac {1}{2} \int \left (\frac {3 (-1+x)}{x}+\frac {6 (-1+2 \log (x))}{e^{\log ^2(x)}-x}+\frac {3 \left (-2-x^2-4 \log (x)+2 x^2 \log (x)\right )}{x \left (-2-e^{\log ^2(x)} x+x^2\right )}+\frac {3 \left (2-x^2+4 \log (x)+2 x^2 \log (x)\right )}{x \left (2-e^{\log ^2(x)} x+x^2\right )}\right ) \, dx\\ &=\frac {3}{2} \int \frac {-1+x}{x} \, dx+\frac {3}{2} \int \frac {-2-x^2-4 \log (x)+2 x^2 \log (x)}{x \left (-2-e^{\log ^2(x)} x+x^2\right )} \, dx+\frac {3}{2} \int \frac {2-x^2+4 \log (x)+2 x^2 \log (x)}{x \left (2-e^{\log ^2(x)} x+x^2\right )} \, dx+3 \int \frac {-1+2 \log (x)}{e^{\log ^2(x)}-x} \, dx\\ &=\frac {3}{2} \int \left (1-\frac {1}{x}\right ) \, dx+\frac {3}{2} \int \left (-\frac {2}{x \left (-2-e^{\log ^2(x)} x+x^2\right )}-\frac {x}{-2-e^{\log ^2(x)} x+x^2}-\frac {4 \log (x)}{x \left (-2-e^{\log ^2(x)} x+x^2\right )}+\frac {2 x \log (x)}{-2-e^{\log ^2(x)} x+x^2}\right ) \, dx+\frac {3}{2} \int \left (\frac {2}{x \left (2-e^{\log ^2(x)} x+x^2\right )}-\frac {x}{2-e^{\log ^2(x)} x+x^2}+\frac {4 \log (x)}{x \left (2-e^{\log ^2(x)} x+x^2\right )}+\frac {2 x \log (x)}{2-e^{\log ^2(x)} x+x^2}\right ) \, dx+3 \int \left (-\frac {1}{e^{\log ^2(x)}-x}+\frac {2 \log (x)}{e^{\log ^2(x)}-x}\right ) \, dx\\ &=\frac {3 x}{2}-\frac {3 \log (x)}{2}-\frac {3}{2} \int \frac {x}{-2-e^{\log ^2(x)} x+x^2} \, dx-\frac {3}{2} \int \frac {x}{2-e^{\log ^2(x)} x+x^2} \, dx-3 \int \frac {1}{e^{\log ^2(x)}-x} \, dx-3 \int \frac {1}{x \left (-2-e^{\log ^2(x)} x+x^2\right )} \, dx+3 \int \frac {1}{x \left (2-e^{\log ^2(x)} x+x^2\right )} \, dx+3 \int \frac {x \log (x)}{-2-e^{\log ^2(x)} x+x^2} \, dx+3 \int \frac {x \log (x)}{2-e^{\log ^2(x)} x+x^2} \, dx+6 \int \frac {\log (x)}{e^{\log ^2(x)}-x} \, dx-6 \int \frac {\log (x)}{x \left (-2-e^{\log ^2(x)} x+x^2\right )} \, dx+6 \int \frac {\log (x)}{x \left (2-e^{\log ^2(x)} x+x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 56, normalized size = 1.87 \begin {gather*} \frac {3}{2} \left (x+2 \log \left (e^{\log ^2(x)}-x\right )+\log (x)-\log \left (2+e^{\log ^2(x)} x-x^2\right )-\log \left (2-e^{\log ^2(x)} x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 53, normalized size = 1.77 \begin {gather*} \frac {3}{2} \, x - \frac {3}{2} \, \log \relax (x) + 3 \, \log \left (-x + e^{\left (\log \relax (x)^{2}\right )}\right ) - \frac {3}{2} \, \log \left (\frac {x^{4} - 2 \, x^{3} e^{\left (\log \relax (x)^{2}\right )} + x^{2} e^{\left (2 \, \log \relax (x)^{2}\right )} - 4}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 49, normalized size = 1.63
method | result | size |
risch | \(\frac {3 x}{2}-\frac {3 \ln \relax (x )}{2}+3 \ln \left (-x +{\mathrm e}^{\ln \relax (x )^{2}}\right )-\frac {3 \ln \left ({\mathrm e}^{2 \ln \relax (x )^{2}}-2 \,{\mathrm e}^{\ln \relax (x )^{2}} x +\frac {x^{4}-4}{x^{2}}\right )}{2}\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 62, normalized size = 2.07 \begin {gather*} \frac {3}{2} \, x - \frac {3}{2} \, \log \relax (x) + 3 \, \log \left (-x + e^{\left (\log \relax (x)^{2}\right )}\right ) - \frac {3}{2} \, \log \left (-\frac {x^{2} - x e^{\left (\log \relax (x)^{2}\right )} + 2}{x}\right ) - \frac {3}{2} \, \log \left (-\frac {x^{2} - x e^{\left (\log \relax (x)^{2}\right )} - 2}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {36\,x-{\mathrm {e}}^{3\,{\ln \relax (x)}^2}\,\left (3\,x^2-3\,x^3\right )+{\mathrm {e}}^{2\,{\ln \relax (x)}^2}\,\left (9\,x^3-9\,x^4\right )+12\,x^2+3\,x^5-3\,x^6-{\mathrm {e}}^{{\ln \relax (x)}^2}\,\left (12\,x+48\,\ln \relax (x)+9\,x^4-9\,x^5+12\right )}{6\,x^4\,{\mathrm {e}}^{2\,{\ln \relax (x)}^2}-2\,x^3\,{\mathrm {e}}^{3\,{\ln \relax (x)}^2}+{\mathrm {e}}^{{\ln \relax (x)}^2}\,\left (8\,x-6\,x^5\right )-8\,x^2+2\,x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.74, size = 54, normalized size = 1.80 \begin {gather*} \frac {3 x}{2} - \frac {3 \log {\relax (x )}}{2} + 3 \log {\left (- x + e^{\log {\relax (x )}^{2}} \right )} - \frac {3 \log {\left (- 2 x e^{\log {\relax (x )}^{2}} + e^{2 \log {\relax (x )}^{2}} + \frac {x^{4} - 4}{x^{2}} \right )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________