Optimal. Leaf size=23 \[ \frac {x \left (-x+x^3\right )}{\log (x)}+(x+10 \log (\log (2)))^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 27, normalized size of antiderivative = 1.17, number of steps used = 16, number of rules used = 5, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6742, 2353, 2306, 2309, 2178} \begin {gather*} \frac {x^4}{\log (x)}-\frac {x^2}{\log (x)}+(x+10 \log (\log (2)))^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2306
Rule 2309
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {x \left (1-x^2\right )}{\log ^2(x)}+\frac {2 x \left (-1+2 x^2\right )}{\log (x)}+2 (x+10 \log (\log (2)))\right ) \, dx\\ &=(x+10 \log (\log (2)))^2+2 \int \frac {x \left (-1+2 x^2\right )}{\log (x)} \, dx+\int \frac {x \left (1-x^2\right )}{\log ^2(x)} \, dx\\ &=(x+10 \log (\log (2)))^2+2 \int \left (-\frac {x}{\log (x)}+\frac {2 x^3}{\log (x)}\right ) \, dx+\int \left (\frac {x}{\log ^2(x)}-\frac {x^3}{\log ^2(x)}\right ) \, dx\\ &=(x+10 \log (\log (2)))^2-2 \int \frac {x}{\log (x)} \, dx+4 \int \frac {x^3}{\log (x)} \, dx+\int \frac {x}{\log ^2(x)} \, dx-\int \frac {x^3}{\log ^2(x)} \, dx\\ &=-\frac {x^2}{\log (x)}+\frac {x^4}{\log (x)}+(x+10 \log (\log (2)))^2+2 \int \frac {x}{\log (x)} \, dx-2 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-4 \int \frac {x^3}{\log (x)} \, dx+4 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )\\ &=-2 \text {Ei}(2 \log (x))+4 \text {Ei}(4 \log (x))-\frac {x^2}{\log (x)}+\frac {x^4}{\log (x)}+(x+10 \log (\log (2)))^2+2 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-4 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {x^2}{\log (x)}+\frac {x^4}{\log (x)}+(x+10 \log (\log (2)))^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 20, normalized size = 0.87 \begin {gather*} x \left (x+\frac {x \left (-1+x^2\right )}{\log (x)}+20 \log (\log (2))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 28, normalized size = 1.22 \begin {gather*} \frac {x^{4} + x^{2} \log \relax (x) + 20 \, x \log \relax (x) \log \left (\log \relax (2)\right ) - x^{2}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 27, normalized size = 1.17 \begin {gather*} \frac {x^{4}}{\log \relax (x)} + x^{2} + 20 \, x \log \left (\log \relax (2)\right ) - \frac {x^{2}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 1.04
method | result | size |
risch | \(20 x \ln \left (\ln \relax (2)\right )+x^{2}+\frac {x^{2} \left (x^{2}-1\right )}{\ln \relax (x )}\) | \(24\) |
default | \(20 x \ln \left (\ln \relax (2)\right )+x^{2}+\frac {x^{4}}{\ln \relax (x )}-\frac {x^{2}}{\ln \relax (x )}\) | \(28\) |
norman | \(\frac {x^{4}+x^{2} \ln \relax (x )-x^{2}+20 x \ln \left (\ln \relax (2)\right ) \ln \relax (x )}{\ln \relax (x )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 40, normalized size = 1.74 \begin {gather*} x^{2} + 20 \, x \log \left (\log \relax (2)\right ) + 4 \, {\rm Ei}\left (4 \, \log \relax (x)\right ) - 2 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) + 2 \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) - 4 \, \Gamma \left (-1, -4 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.09, size = 24, normalized size = 1.04 \begin {gather*} x\,\left (x+20\,\ln \left (\ln \relax (2)\right )\right )-\frac {x\,\left (x-x^3\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 20, normalized size = 0.87 \begin {gather*} x^{2} + 20 x \log {\left (\log {\relax (2 )} \right )} + \frac {x^{4} - x^{2}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________