Optimal. Leaf size=19 \[ 4-e^{e^{-16-4 x^2} (-1+x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-16+e^{-16-4 x^2} (-1+x)-4 x^2} \left (-1-8 x+8 x^2\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{-16+e^{-16-4 x^2} (-1+x)-4 x^2}-8 e^{-16+e^{-16-4 x^2} (-1+x)-4 x^2} x+8 e^{-16+e^{-16-4 x^2} (-1+x)-4 x^2} x^2\right ) \, dx\\ &=-\left (8 \int e^{-16+e^{-16-4 x^2} (-1+x)-4 x^2} x \, dx\right )+8 \int e^{-16+e^{-16-4 x^2} (-1+x)-4 x^2} x^2 \, dx-\int e^{-16+e^{-16-4 x^2} (-1+x)-4 x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 17, normalized size = 0.89 \begin {gather*} -e^{e^{-16-4 x^2} (-1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 15, normalized size = 0.79 \begin {gather*} -e^{\left ({\left (x - 1\right )} e^{\left (-4 \, x^{2} - 16\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (8 \, x^{2} - 8 \, x - 1\right )} e^{\left (-4 \, x^{2} + {\left (x - 1\right )} e^{\left (-4 \, x^{2} - 16\right )} - 16\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 16, normalized size = 0.84
method | result | size |
risch | \(-{\mathrm e}^{\left (x -1\right ) {\mathrm e}^{-4 x^{2}-16}}\) | \(16\) |
norman | \(-{\mathrm e}^{\left (x -1\right ) {\mathrm e}^{-4 x^{2}-16}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 24, normalized size = 1.26 \begin {gather*} -e^{\left (x e^{\left (-4 \, x^{2} - 16\right )} - e^{\left (-4 \, x^{2} - 16\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.42, size = 24, normalized size = 1.26 \begin {gather*} -{\mathrm {e}}^{x\,{\mathrm {e}}^{-16}\,{\mathrm {e}}^{-4\,x^2}}\,{\mathrm {e}}^{-{\mathrm {e}}^{-16}\,{\mathrm {e}}^{-4\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 15, normalized size = 0.79 \begin {gather*} - e^{\left (x - 1\right ) e^{- 4 x^{2} - 16}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________