Optimal. Leaf size=18 \[ \frac {3}{11+4^{x (4+x)}-\frac {x}{2}} \]
________________________________________________________________________________________
Rubi [F] time = 0.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6+4^{4 x+x^2} (-48-24 x) \log (4)}{484+4^{1+8 x+2 x^2}+4^{4 x+x^2} (88-4 x)-44 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6+4^{4 x+x^2} (-48-24 x) \log (4)}{\left (22+2^{1+8 x+2 x^2}-x\right )^2} \, dx\\ &=\int \left (-\frac {12 (2+x) \log (4)}{22+2^{1+8 x+2 x^2}-x}-\frac {6 \left (-1-88 \log (4)-40 x \log (4)+2 x^2 \log (4)\right )}{\left (22+2^{1+8 x+2 x^2}-x\right )^2}\right ) \, dx\\ &=-\left (6 \int \frac {-1-88 \log (4)-40 x \log (4)+2 x^2 \log (4)}{\left (22+2^{1+8 x+2 x^2}-x\right )^2} \, dx\right )-(12 \log (4)) \int \frac {2+x}{22+2^{1+8 x+2 x^2}-x} \, dx\\ &=-\left (6 \int \left (-\frac {40 x \log (4)}{\left (22+2^{1+8 x+2 x^2}-x\right )^2}+\frac {2 x^2 \log (4)}{\left (22+2^{1+8 x+2 x^2}-x\right )^2}-\frac {1+88 \log (4)}{\left (22+2^{1+8 x+2 x^2}-x\right )^2}\right ) \, dx\right )-(12 \log (4)) \int \left (\frac {2}{22+2^{1+8 x+2 x^2}-x}+\frac {x}{22+2^{1+8 x+2 x^2}-x}\right ) \, dx\\ &=-\left ((12 \log (4)) \int \frac {x}{22+2^{1+8 x+2 x^2}-x} \, dx\right )-(12 \log (4)) \int \frac {x^2}{\left (22+2^{1+8 x+2 x^2}-x\right )^2} \, dx-(24 \log (4)) \int \frac {1}{22+2^{1+8 x+2 x^2}-x} \, dx+(240 \log (4)) \int \frac {x}{\left (22+2^{1+8 x+2 x^2}-x\right )^2} \, dx+(6 (1+88 \log (4))) \int \frac {1}{\left (22+2^{1+8 x+2 x^2}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 21, normalized size = 1.17 \begin {gather*} \frac {6}{22+2^{1+8 x+2 x^2}-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 22, normalized size = 1.22 \begin {gather*} \frac {6}{2 \cdot 2^{2 \, x^{2} + 8 \, x} - x + 22} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {6 \, {\left (8 \cdot 2^{2 \, x^{2} + 8 \, x} {\left (x + 2\right )} \log \relax (2) - 1\right )}}{4 \cdot 2^{2 \, x^{2} + 8 \, x} {\left (x - 22\right )} - x^{2} - 4 \cdot 2^{4 \, x^{2} + 16 \, x} + 44 \, x - 484}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 17, normalized size = 0.94
method | result | size |
risch | \(-\frac {6}{x -2 \,4^{\left (4+x \right ) x}-22}\) | \(17\) |
norman | \(-\frac {6}{x -2 \,{\mathrm e}^{2 \left (x^{2}+4 x \right ) \ln \relax (2)}-22}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 23, normalized size = 1.28 \begin {gather*} -\frac {6}{x - 2 \, e^{\left (2 \, x^{2} \log \relax (2) + 8 \, x \log \relax (2)\right )} - 22} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.06 \begin {gather*} \int -\frac {2\,{\mathrm {e}}^{2\,\ln \relax (2)\,\left (x^2+4\,x\right )}\,\ln \relax (2)\,\left (24\,x+48\right )-6}{4\,{\mathrm {e}}^{4\,\ln \relax (2)\,\left (x^2+4\,x\right )}-44\,x-{\mathrm {e}}^{2\,\ln \relax (2)\,\left (x^2+4\,x\right )}\,\left (4\,x-88\right )+x^2+484} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 1.06 \begin {gather*} \frac {6}{- x + 2 e^{\left (2 x^{2} + 8 x\right ) \log {\relax (2 )}} + 22} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________