Optimal. Leaf size=24 \[ 5 \left (9-\frac {x+\left (5+2 \left (\frac {1}{x}+x\right )\right )^4}{x}\right ) \log (x) \]
________________________________________________________________________________________
Rubi [B] time = 0.24, antiderivative size = 59, normalized size of antiderivative = 2.46, number of steps used = 14, number of rules used = 4, integrand size = 82, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {14, 2357, 2295, 2304} \begin {gather*} -\frac {80 \log (x)}{x^5}-\frac {800 \log (x)}{x^4}-80 x^3 \log (x)-\frac {3320 \log (x)}{x^3}-800 x^2 \log (x)-\frac {7400 \log (x)}{x^2}-3320 x \log (x)-7360 \log (x)-\frac {9605 \log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2295
Rule 2304
Rule 2357
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {5 \left (16+160 x+664 x^2+1480 x^3+1921 x^4+1472 x^5+664 x^6+160 x^7+16 x^8\right )}{x^6}-\frac {5 (2+x)^3 (1+2 x)^3 \left (-10-5 x+6 x^2\right ) \log (x)}{x^6}\right ) \, dx\\ &=-\left (5 \int \frac {16+160 x+664 x^2+1480 x^3+1921 x^4+1472 x^5+664 x^6+160 x^7+16 x^8}{x^6} \, dx\right )-5 \int \frac {(2+x)^3 (1+2 x)^3 \left (-10-5 x+6 x^2\right ) \log (x)}{x^6} \, dx\\ &=-\left (5 \int \left (664+\frac {16}{x^6}+\frac {160}{x^5}+\frac {664}{x^4}+\frac {1480}{x^3}+\frac {1921}{x^2}+\frac {1472}{x}+160 x+16 x^2\right ) \, dx\right )-5 \int \left (664 \log (x)-\frac {80 \log (x)}{x^6}-\frac {640 \log (x)}{x^5}-\frac {1992 \log (x)}{x^4}-\frac {2960 \log (x)}{x^3}-\frac {1921 \log (x)}{x^2}+320 x \log (x)+48 x^2 \log (x)\right ) \, dx\\ &=\frac {16}{x^5}+\frac {200}{x^4}+\frac {3320}{3 x^3}+\frac {3700}{x^2}+\frac {9605}{x}-3320 x-400 x^2-\frac {80 x^3}{3}-7360 \log (x)-240 \int x^2 \log (x) \, dx+400 \int \frac {\log (x)}{x^6} \, dx-1600 \int x \log (x) \, dx+3200 \int \frac {\log (x)}{x^5} \, dx-3320 \int \log (x) \, dx+9605 \int \frac {\log (x)}{x^2} \, dx+9960 \int \frac {\log (x)}{x^4} \, dx+14800 \int \frac {\log (x)}{x^3} \, dx\\ &=-7360 \log (x)-\frac {80 \log (x)}{x^5}-\frac {800 \log (x)}{x^4}-\frac {3320 \log (x)}{x^3}-\frac {7400 \log (x)}{x^2}-\frac {9605 \log (x)}{x}-3320 x \log (x)-800 x^2 \log (x)-80 x^3 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.02, size = 59, normalized size = 2.46 \begin {gather*} -7360 \log (x)-\frac {80 \log (x)}{x^5}-\frac {800 \log (x)}{x^4}-\frac {3320 \log (x)}{x^3}-\frac {7400 \log (x)}{x^2}-\frac {9605 \log (x)}{x}-3320 x \log (x)-800 x^2 \log (x)-80 x^3 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 47, normalized size = 1.96 \begin {gather*} -\frac {5 \, {\left (16 \, x^{8} + 160 \, x^{7} + 664 \, x^{6} + 1472 \, x^{5} + 1921 \, x^{4} + 1480 \, x^{3} + 664 \, x^{2} + 160 \, x + 16\right )} \log \relax (x)}{x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 47, normalized size = 1.96 \begin {gather*} -5 \, {\left (16 \, x^{3} + 160 \, x^{2} + 664 \, x + \frac {1921 \, x^{4} + 1480 \, x^{3} + 664 \, x^{2} + 160 \, x + 16}{x^{5}}\right )} \log \relax (x) - 7360 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 48, normalized size = 2.00
method | result | size |
risch | \(-\frac {5 \left (16 x^{8}+160 x^{7}+664 x^{6}+1921 x^{4}+1480 x^{3}+664 x^{2}+160 x +16\right ) \ln \relax (x )}{x^{5}}-7360 \ln \relax (x )\) | \(48\) |
default | \(-800 x^{2} \ln \relax (x )-\frac {9605 \ln \relax (x )}{x}-7360 \ln \relax (x )-80 x^{3} \ln \relax (x )-\frac {7400 \ln \relax (x )}{x^{2}}-3320 x \ln \relax (x )-\frac {3320 \ln \relax (x )}{x^{3}}-\frac {800 \ln \relax (x )}{x^{4}}-\frac {80 \ln \relax (x )}{x^{5}}\) | \(60\) |
norman | \(\frac {-7360 x^{5} \ln \relax (x )-800 x \ln \relax (x )-3320 x^{2} \ln \relax (x )-7400 x^{3} \ln \relax (x )-9605 x^{4} \ln \relax (x )-3320 x^{6} \ln \relax (x )-800 x^{7} \ln \relax (x )-80 x^{8} \ln \relax (x )-80 \ln \relax (x )}{x^{5}}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 59, normalized size = 2.46 \begin {gather*} -80 \, x^{3} \log \relax (x) - 800 \, x^{2} \log \relax (x) - 3320 \, x \log \relax (x) - \frac {9605 \, \log \relax (x)}{x} - \frac {7400 \, \log \relax (x)}{x^{2}} - \frac {3320 \, \log \relax (x)}{x^{3}} - \frac {800 \, \log \relax (x)}{x^{4}} - \frac {80 \, \log \relax (x)}{x^{5}} - 7360 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.35, size = 67, normalized size = 2.79 \begin {gather*} -\frac {800\,x^2\,\ln \relax (x)+3320\,x^3\,\ln \relax (x)+7400\,x^4\,\ln \relax (x)+9605\,x^5\,\ln \relax (x)+7360\,x^6\,\ln \relax (x)+3320\,x^7\,\ln \relax (x)+800\,x^8\,\ln \relax (x)+80\,x^9\,\ln \relax (x)+80\,x\,\ln \relax (x)}{x^6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.20, size = 48, normalized size = 2.00 \begin {gather*} - 7360 \log {\relax (x )} + \frac {\left (- 80 x^{8} - 800 x^{7} - 3320 x^{6} - 9605 x^{4} - 7400 x^{3} - 3320 x^{2} - 800 x - 80\right ) \log {\relax (x )}}{x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________