Optimal. Leaf size=27 \[ 4-\frac {5 \left (7+e^{4-x}+\frac {2}{x}+\log (4)\right )}{4+e^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 29, normalized size of antiderivative = 1.07, number of steps used = 5, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {6, 12, 14, 2194} \begin {gather*} -\frac {5 e^{4-x}}{4+e^2}-\frac {10}{\left (4+e^2\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10+5 e^{4-x} x^2}{\left (4+e^2\right ) x^2} \, dx\\ &=\frac {\int \frac {10+5 e^{4-x} x^2}{x^2} \, dx}{4+e^2}\\ &=\frac {\int \left (5 e^{4-x}+\frac {10}{x^2}\right ) \, dx}{4+e^2}\\ &=-\frac {10}{\left (4+e^2\right ) x}+\frac {5 \int e^{4-x} \, dx}{4+e^2}\\ &=-\frac {5 e^{4-x}}{4+e^2}-\frac {10}{\left (4+e^2\right ) x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 25, normalized size = 0.93 \begin {gather*} -\frac {10+5 e^{4-x} x}{4 x+e^2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 22, normalized size = 0.81 \begin {gather*} -\frac {5 \, {\left (x e^{\left (-x + 4\right )} + 2\right )}}{x e^{2} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 22, normalized size = 0.81 \begin {gather*} -\frac {5 \, {\left (x e^{\left (-x + 4\right )} + 2\right )}}{x e^{2} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 27, normalized size = 1.00
method | result | size |
derivativedivides | \(-\frac {5 \,{\mathrm e}^{-x +4}}{4+{\mathrm e}^{2}}-\frac {10}{x \left (4+{\mathrm e}^{2}\right )}\) | \(27\) |
default | \(-\frac {5 \,{\mathrm e}^{-x +4}}{4+{\mathrm e}^{2}}-\frac {10}{x \left (4+{\mathrm e}^{2}\right )}\) | \(27\) |
risch | \(-\frac {5 \,{\mathrm e}^{-x +4}}{4+{\mathrm e}^{2}}-\frac {10}{x \left (4+{\mathrm e}^{2}\right )}\) | \(27\) |
norman | \(\frac {-\frac {10}{4+{\mathrm e}^{2}}-\frac {5 x \,{\mathrm e}^{-x +4}}{4+{\mathrm e}^{2}}}{x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 26, normalized size = 0.96 \begin {gather*} -\frac {5 \, e^{\left (-x + 4\right )}}{e^{2} + 4} - \frac {10}{x {\left (e^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 22, normalized size = 0.81 \begin {gather*} -\frac {5\,x\,{\mathrm {e}}^{4-x}+10}{x\,\left ({\mathrm {e}}^2+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 20, normalized size = 0.74 \begin {gather*} - \frac {5 e^{4 - x}}{4 + e^{2}} - \frac {10}{x \left (4 + e^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________