Optimal. Leaf size=25 \[ e^{e^4}+\frac {625 e^x x^4}{16 \left (e+e^{2 x}\right )^4} \]
________________________________________________________________________________________
Rubi [F] time = 2.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{3 x} \left (2500 x^3-4375 x^4\right )+e^{1+x} \left (2500 x^3+625 x^4\right )}{16 e^5+16 e^{10 x}+80 e^{4+2 x}+160 e^{3+4 x}+160 e^{2+6 x}+80 e^{1+8 x}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {625 e^x x^3 \left (e (4+x)-e^{2 x} (-4+7 x)\right )}{16 \left (e+e^{2 x}\right )^5} \, dx\\ &=\frac {625}{16} \int \frac {e^x x^3 \left (e (4+x)-e^{2 x} (-4+7 x)\right )}{\left (e+e^{2 x}\right )^5} \, dx\\ &=\frac {625}{16} \int \left (\frac {8 e^{1+x} x^4}{\left (e+e^{2 x}\right )^5}-\frac {e^x x^3 (-4+7 x)}{\left (e+e^{2 x}\right )^4}\right ) \, dx\\ &=-\left (\frac {625}{16} \int \frac {e^x x^3 (-4+7 x)}{\left (e+e^{2 x}\right )^4} \, dx\right )+\frac {625}{2} \int \frac {e^{1+x} x^4}{\left (e+e^{2 x}\right )^5} \, dx\\ &=-\left (\frac {625}{16} \int \left (-\frac {4 e^x x^3}{\left (e+e^{2 x}\right )^4}+\frac {7 e^x x^4}{\left (e+e^{2 x}\right )^4}\right ) \, dx\right )+\frac {625}{2} \int \frac {e^{1+x} x^4}{\left (e+e^{2 x}\right )^5} \, dx\\ &=\frac {625}{4} \int \frac {e^x x^3}{\left (e+e^{2 x}\right )^4} \, dx-\frac {4375}{16} \int \frac {e^x x^4}{\left (e+e^{2 x}\right )^4} \, dx+\frac {625}{2} \int \frac {e^{1+x} x^4}{\left (e+e^{2 x}\right )^5} \, dx\\ &=\frac {625 e^{-1+x} x^3}{24 \left (e+e^{2 x}\right )^3}+\frac {3125 e^{-2+x} x^3}{96 \left (e+e^{2 x}\right )^2}+\frac {3125 e^{-3+x} x^3}{64 \left (e+e^{2 x}\right )}-\frac {4375 e^{-1+x} x^4}{96 \left (e+e^{2 x}\right )^3}-\frac {21875 e^{-2+x} x^4}{384 \left (e+e^{2 x}\right )^2}-\frac {21875 e^{-3+x} x^4}{256 \left (e+e^{2 x}\right )}+\frac {3125 x^3 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{64 e^{7/2}}-\frac {21875 x^4 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{256 e^{7/2}}+\frac {625}{2} \int \frac {e^{1+x} x^4}{\left (e+e^{2 x}\right )^5} \, dx-\frac {1875}{4} \int x^2 \left (\frac {e^{-1+x}}{6 \left (e+e^{2 x}\right )^3}+\frac {5 e^{-2+x}}{24 \left (e+e^{2 x}\right )^2}+\frac {5 e^{-3+x}}{16 \left (e+e^{2 x}\right )}+\frac {5 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{16 e^{7/2}}\right ) \, dx+\frac {4375}{4} \int x^3 \left (\frac {e^{-1+x}}{6 \left (e+e^{2 x}\right )^3}+\frac {5 e^{-2+x}}{24 \left (e+e^{2 x}\right )^2}+\frac {5 e^{-3+x}}{16 \left (e+e^{2 x}\right )}+\frac {5 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{16 e^{7/2}}\right ) \, dx\\ &=\frac {625 e^{-1+x} x^3}{24 \left (e+e^{2 x}\right )^3}+\frac {3125 e^{-2+x} x^3}{96 \left (e+e^{2 x}\right )^2}+\frac {3125 e^{-3+x} x^3}{64 \left (e+e^{2 x}\right )}-\frac {4375 e^{-1+x} x^4}{96 \left (e+e^{2 x}\right )^3}-\frac {21875 e^{-2+x} x^4}{384 \left (e+e^{2 x}\right )^2}-\frac {21875 e^{-3+x} x^4}{256 \left (e+e^{2 x}\right )}+\frac {3125 x^3 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{64 e^{7/2}}-\frac {21875 x^4 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{256 e^{7/2}}+\frac {625}{2} \int \frac {e^{1+x} x^4}{\left (e+e^{2 x}\right )^5} \, dx-\frac {1875}{4} \int \left (\frac {e^{-1+x} x^2}{6 \left (e+e^{2 x}\right )^3}+\frac {5 e^{-2+x} x^2}{24 \left (e+e^{2 x}\right )^2}+\frac {5 e^{-3+x} x^2}{16 \left (e+e^{2 x}\right )}+\frac {5 x^2 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{16 e^{7/2}}\right ) \, dx+\frac {4375}{4} \int \left (\frac {e^{-1+x} x^3}{6 \left (e+e^{2 x}\right )^3}+\frac {5 e^{-2+x} x^3}{24 \left (e+e^{2 x}\right )^2}+\frac {5 e^{-3+x} x^3}{16 \left (e+e^{2 x}\right )}+\frac {5 x^3 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{16 e^{7/2}}\right ) \, dx\\ &=\frac {625 e^{-1+x} x^3}{24 \left (e+e^{2 x}\right )^3}+\frac {3125 e^{-2+x} x^3}{96 \left (e+e^{2 x}\right )^2}+\frac {3125 e^{-3+x} x^3}{64 \left (e+e^{2 x}\right )}-\frac {4375 e^{-1+x} x^4}{96 \left (e+e^{2 x}\right )^3}-\frac {21875 e^{-2+x} x^4}{384 \left (e+e^{2 x}\right )^2}-\frac {21875 e^{-3+x} x^4}{256 \left (e+e^{2 x}\right )}+\frac {3125 x^3 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{64 e^{7/2}}-\frac {21875 x^4 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{256 e^{7/2}}-\frac {625}{8} \int \frac {e^{-1+x} x^2}{\left (e+e^{2 x}\right )^3} \, dx-\frac {3125}{32} \int \frac {e^{-2+x} x^2}{\left (e+e^{2 x}\right )^2} \, dx-\frac {9375}{64} \int \frac {e^{-3+x} x^2}{e+e^{2 x}} \, dx+\frac {4375}{24} \int \frac {e^{-1+x} x^3}{\left (e+e^{2 x}\right )^3} \, dx+\frac {21875}{96} \int \frac {e^{-2+x} x^3}{\left (e+e^{2 x}\right )^2} \, dx+\frac {625}{2} \int \frac {e^{1+x} x^4}{\left (e+e^{2 x}\right )^5} \, dx+\frac {21875}{64} \int \frac {e^{-3+x} x^3}{e+e^{2 x}} \, dx-\frac {9375 \int x^2 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right ) \, dx}{64 e^{7/2}}+\frac {21875 \int x^3 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right ) \, dx}{64 e^{7/2}}\\ &=\frac {625 e^{-1+x} x^3}{24 \left (e+e^{2 x}\right )^3}+\frac {3125 e^{-2+x} x^3}{96 \left (e+e^{2 x}\right )^2}+\frac {3125 e^{-3+x} x^3}{64 \left (e+e^{2 x}\right )}-\frac {4375 e^{-1+x} x^4}{96 \left (e+e^{2 x}\right )^3}-\frac {21875 e^{-2+x} x^4}{384 \left (e+e^{2 x}\right )^2}-\frac {21875 e^{-3+x} x^4}{256 \left (e+e^{2 x}\right )}+\frac {3125 x^3 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{64 e^{7/2}}-\frac {21875 x^4 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{256 e^{7/2}}-\frac {625}{8} \int \frac {e^{-1+x} x^2}{\left (e+e^{2 x}\right )^3} \, dx-\frac {3125}{32} \int \frac {e^{-2+x} x^2}{\left (e+e^{2 x}\right )^2} \, dx-\frac {9375}{64} \int \frac {e^{-3+x} x^2}{e+e^{2 x}} \, dx+\frac {4375}{24} \int \frac {e^{-1+x} x^3}{\left (e+e^{2 x}\right )^3} \, dx+\frac {21875}{96} \int \frac {e^{-2+x} x^3}{\left (e+e^{2 x}\right )^2} \, dx+\frac {625}{2} \int \frac {e^{1+x} x^4}{\left (e+e^{2 x}\right )^5} \, dx+\frac {21875}{64} \int \frac {e^{-3+x} x^3}{e+e^{2 x}} \, dx-\frac {(9375 i) \int x^2 \log \left (1-i e^{-\frac {1}{2}+x}\right ) \, dx}{128 e^{7/2}}+\frac {(9375 i) \int x^2 \log \left (1+i e^{-\frac {1}{2}+x}\right ) \, dx}{128 e^{7/2}}+\frac {(21875 i) \int x^3 \log \left (1-i e^{-\frac {1}{2}+x}\right ) \, dx}{128 e^{7/2}}-\frac {(21875 i) \int x^3 \log \left (1+i e^{-\frac {1}{2}+x}\right ) \, dx}{128 e^{7/2}}\\ &=\frac {625 e^{-1+x} x^3}{24 \left (e+e^{2 x}\right )^3}+\frac {3125 e^{-2+x} x^3}{96 \left (e+e^{2 x}\right )^2}+\frac {3125 e^{-3+x} x^3}{64 \left (e+e^{2 x}\right )}-\frac {4375 e^{-1+x} x^4}{96 \left (e+e^{2 x}\right )^3}-\frac {21875 e^{-2+x} x^4}{384 \left (e+e^{2 x}\right )^2}-\frac {21875 e^{-3+x} x^4}{256 \left (e+e^{2 x}\right )}+\frac {3125 x^3 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{64 e^{7/2}}-\frac {21875 x^4 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{256 e^{7/2}}-\frac {9375 i x^2 \text {Li}_2\left (-i e^{-\frac {1}{2}+x}\right )}{128 e^{7/2}}+\frac {21875 i x^3 \text {Li}_2\left (-i e^{-\frac {1}{2}+x}\right )}{128 e^{7/2}}+\frac {9375 i x^2 \text {Li}_2\left (i e^{-\frac {1}{2}+x}\right )}{128 e^{7/2}}-\frac {21875 i x^3 \text {Li}_2\left (i e^{-\frac {1}{2}+x}\right )}{128 e^{7/2}}-\frac {625}{8} \int \frac {e^{-1+x} x^2}{\left (e+e^{2 x}\right )^3} \, dx-\frac {3125}{32} \int \frac {e^{-2+x} x^2}{\left (e+e^{2 x}\right )^2} \, dx-\frac {9375}{64} \int \frac {e^{-3+x} x^2}{e+e^{2 x}} \, dx+\frac {4375}{24} \int \frac {e^{-1+x} x^3}{\left (e+e^{2 x}\right )^3} \, dx+\frac {21875}{96} \int \frac {e^{-2+x} x^3}{\left (e+e^{2 x}\right )^2} \, dx+\frac {625}{2} \int \frac {e^{1+x} x^4}{\left (e+e^{2 x}\right )^5} \, dx+\frac {21875}{64} \int \frac {e^{-3+x} x^3}{e+e^{2 x}} \, dx+\frac {(9375 i) \int x \text {Li}_2\left (-i e^{-\frac {1}{2}+x}\right ) \, dx}{64 e^{7/2}}-\frac {(9375 i) \int x \text {Li}_2\left (i e^{-\frac {1}{2}+x}\right ) \, dx}{64 e^{7/2}}-\frac {(65625 i) \int x^2 \text {Li}_2\left (-i e^{-\frac {1}{2}+x}\right ) \, dx}{128 e^{7/2}}+\frac {(65625 i) \int x^2 \text {Li}_2\left (i e^{-\frac {1}{2}+x}\right ) \, dx}{128 e^{7/2}}\\ &=\frac {625 e^{-1+x} x^3}{24 \left (e+e^{2 x}\right )^3}+\frac {3125 e^{-2+x} x^3}{96 \left (e+e^{2 x}\right )^2}+\frac {3125 e^{-3+x} x^3}{64 \left (e+e^{2 x}\right )}-\frac {4375 e^{-1+x} x^4}{96 \left (e+e^{2 x}\right )^3}-\frac {21875 e^{-2+x} x^4}{384 \left (e+e^{2 x}\right )^2}-\frac {21875 e^{-3+x} x^4}{256 \left (e+e^{2 x}\right )}+\frac {3125 x^3 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{64 e^{7/2}}-\frac {21875 x^4 \tan ^{-1}\left (e^{-\frac {1}{2}+x}\right )}{256 e^{7/2}}-\frac {9375 i x^2 \text {Li}_2\left (-i e^{-\frac {1}{2}+x}\right )}{128 e^{7/2}}+\frac {21875 i x^3 \text {Li}_2\left (-i e^{-\frac {1}{2}+x}\right )}{128 e^{7/2}}+\frac {9375 i x^2 \text {Li}_2\left (i e^{-\frac {1}{2}+x}\right )}{128 e^{7/2}}-\frac {21875 i x^3 \text {Li}_2\left (i e^{-\frac {1}{2}+x}\right )}{128 e^{7/2}}+\frac {9375 i x \text {Li}_3\left (-i e^{-\frac {1}{2}+x}\right )}{64 e^{7/2}}-\frac {65625 i x^2 \text {Li}_3\left (-i e^{-\frac {1}{2}+x}\right )}{128 e^{7/2}}-\frac {9375 i x \text {Li}_3\left (i e^{-\frac {1}{2}+x}\right )}{64 e^{7/2}}+\frac {65625 i x^2 \text {Li}_3\left (i e^{-\frac {1}{2}+x}\right )}{128 e^{7/2}}-\frac {625}{8} \int \frac {e^{-1+x} x^2}{\left (e+e^{2 x}\right )^3} \, dx-\frac {3125}{32} \int \frac {e^{-2+x} x^2}{\left (e+e^{2 x}\right )^2} \, dx-\frac {9375}{64} \int \frac {e^{-3+x} x^2}{e+e^{2 x}} \, dx+\frac {4375}{24} \int \frac {e^{-1+x} x^3}{\left (e+e^{2 x}\right )^3} \, dx+\frac {21875}{96} \int \frac {e^{-2+x} x^3}{\left (e+e^{2 x}\right )^2} \, dx+\frac {625}{2} \int \frac {e^{1+x} x^4}{\left (e+e^{2 x}\right )^5} \, dx+\frac {21875}{64} \int \frac {e^{-3+x} x^3}{e+e^{2 x}} \, dx-\frac {(9375 i) \int \text {Li}_3\left (-i e^{-\frac {1}{2}+x}\right ) \, dx}{64 e^{7/2}}+\frac {(9375 i) \int \text {Li}_3\left (i e^{-\frac {1}{2}+x}\right ) \, dx}{64 e^{7/2}}+\frac {(65625 i) \int x \text {Li}_3\left (-i e^{-\frac {1}{2}+x}\right ) \, dx}{64 e^{7/2}}-\frac {(65625 i) \int x \text {Li}_3\left (i e^{-\frac {1}{2}+x}\right ) \, dx}{64 e^{7/2}}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 19, normalized size = 0.76 \begin {gather*} \frac {625 e^x x^4}{16 \left (e+e^{2 x}\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.94, size = 44, normalized size = 1.76 \begin {gather*} \frac {625 \, x^{4} e^{\left (x + 8\right )}}{16 \, {\left (e^{12} + e^{\left (8 \, x + 8\right )} + 4 \, e^{\left (6 \, x + 9\right )} + 6 \, e^{\left (4 \, x + 10\right )} + 4 \, e^{\left (2 \, x + 11\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 40, normalized size = 1.60 \begin {gather*} \frac {625 \, x^{4} e^{x}}{8 \, {\left (e^{4} + e^{\left (8 \, x\right )} + 4 \, e^{\left (6 \, x + 1\right )} + 6 \, e^{\left (4 \, x + 2\right )} + 4 \, e^{\left (2 \, x + 3\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 17, normalized size = 0.68
method | result | size |
risch | \(\frac {625 x^{4} {\mathrm e}^{x}}{16 \left ({\mathrm e}^{2 x}+{\mathrm e}\right )^{4}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 40, normalized size = 1.60 \begin {gather*} \frac {625 \, x^{4} e^{x}}{16 \, {\left (e^{4} + e^{\left (8 \, x\right )} + 4 \, e^{\left (6 \, x + 1\right )} + 6 \, e^{\left (4 \, x + 2\right )} + 4 \, e^{\left (2 \, x + 3\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.28, size = 44, normalized size = 1.76 \begin {gather*} \frac {625\,x^4\,{\mathrm {e}}^x}{16\,\left ({\mathrm {e}}^{8\,x}+{\mathrm {e}}^4+4\,{\mathrm {e}}^{2\,x+3}+6\,{\mathrm {e}}^{4\,x+2}+4\,{\mathrm {e}}^{6\,x+1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 49, normalized size = 1.96 \begin {gather*} \frac {625 x^{4} e^{x}}{16 e^{8 x} + 64 e e^{6 x} + 96 e^{2} e^{4 x} + 64 e^{3} e^{2 x} + 16 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________