Optimal. Leaf size=28 \[ \frac {1}{4} \log ^2\left (4+\frac {3}{4 x \log \left (-2+e^5\right ) \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.38, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 7, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6741, 12, 6742, 2302, 29, 6688, 6686} \begin {gather*} \frac {1}{4} \log ^2\left (\frac {3}{4 x \log \left (e^5-2\right ) \log (x)}+4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 2302
Rule 6686
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 (-1-\log (x)) \log \left (\frac {3+16 x \log \left (-2+e^5\right ) \log (x)}{4 x \log \left (-2+e^5\right ) \log (x)}\right )}{2 x \log (x) \left (3+16 x \log \left (-2+e^5\right ) \log (x)\right )} \, dx\\ &=\frac {3}{2} \int \frac {(-1-\log (x)) \log \left (\frac {3+16 x \log \left (-2+e^5\right ) \log (x)}{4 x \log \left (-2+e^5\right ) \log (x)}\right )}{x \log (x) \left (3+16 x \log \left (-2+e^5\right ) \log (x)\right )} \, dx\\ &=\frac {3}{2} \int \frac {(-1-\log (x)) \log \left (4+\frac {3}{4 x \log \left (-2+e^5\right ) \log (x)}\right )}{x \log (x) \left (3+16 x \log \left (-2+e^5\right ) \log (x)\right )} \, dx\\ &=\frac {1}{4} \log ^2\left (4+\frac {3}{4 x \log \left (-2+e^5\right ) \log (x)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 28, normalized size = 1.00 \begin {gather*} \frac {1}{4} \log ^2\left (4+\frac {3}{4 x \log \left (-2+e^5\right ) \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 33, normalized size = 1.18 \begin {gather*} \frac {1}{4} \, \log \left (\frac {16 \, x \log \relax (x) \log \left (e^{5} - 2\right ) + 3}{4 \, x \log \relax (x) \log \left (e^{5} - 2\right )}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {3 \, {\left (\log \relax (x) + 1\right )} \log \left (\frac {16 \, x \log \relax (x) \log \left (e^{5} - 2\right ) + 3}{4 \, x \log \relax (x) \log \left (e^{5} - 2\right )}\right )}{2 \, {\left (16 \, x^{2} \log \relax (x)^{2} \log \left (e^{5} - 2\right ) + 3 \, x \log \relax (x)\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.10, size = 0, normalized size = 0.00 \[\int \frac {\left (-3 \ln \relax (x )-3\right ) \ln \left (\frac {16 x \ln \relax (x ) \ln \left ({\mathrm e}^{5}-2\right )+3}{4 x \ln \relax (x ) \ln \left ({\mathrm e}^{5}-2\right )}\right )}{32 x^{2} \ln \relax (x )^{2} \ln \left ({\mathrm e}^{5}-2\right )+6 x \ln \relax (x )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {3}{2} \, \int \frac {{\left (\log \relax (x) + 1\right )} \log \left (\frac {16 \, x \log \relax (x) \log \left (e^{5} - 2\right ) + 3}{4 \, x \log \relax (x) \log \left (e^{5} - 2\right )}\right )}{16 \, x^{2} \log \relax (x)^{2} \log \left (e^{5} - 2\right ) + 3 \, x \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.54, size = 32, normalized size = 1.14 \begin {gather*} \frac {{\ln \left (\frac {4\,x\,\ln \left ({\mathrm {e}}^5-2\right )\,\ln \relax (x)+\frac {3}{4}}{x\,\ln \left ({\mathrm {e}}^5-2\right )\,\ln \relax (x)}\right )}^2}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 32, normalized size = 1.14 \begin {gather*} \frac {\log {\left (\frac {4 x \log {\relax (x )} \log {\left (-2 + e^{5} \right )} + \frac {3}{4}}{x \log {\relax (x )} \log {\left (-2 + e^{5} \right )}} \right )}^{2}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________