Optimal. Leaf size=33 \[ -4-x+\frac {\left (-1+e^5\right ) \left (e^{2 x} (4-2 x)^2+x\right )}{3-x} \]
________________________________________________________________________________________
Rubi [B] time = 0.51, antiderivative size = 70, normalized size of antiderivative = 2.12, number of steps used = 14, number of rules used = 9, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {27, 6741, 6742, 683, 2199, 2194, 2177, 2178, 2176} \begin {gather*} 4 \left (1-e^5\right ) e^{2 x} x-x-\frac {4 \left (1-e^5\right ) e^{2 x}}{3-x}-\frac {3 \left (1-e^5\right )}{3-x}-4 \left (1-e^5\right ) e^{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 683
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-12+3 e^5+6 x-x^2+e^{2 x} \left (-64+104 x-52 x^2+8 x^3+e^5 \left (64-104 x+52 x^2-8 x^3\right )\right )}{(-3+x)^2} \, dx\\ &=\int \frac {-12 \left (1-\frac {e^5}{4}\right )+6 x-x^2+e^{2 x} \left (-64+104 x-52 x^2+8 x^3+e^5 \left (64-104 x+52 x^2-8 x^3\right )\right )}{(3-x)^2} \, dx\\ &=\int \left (\frac {-3 \left (4-e^5\right )+6 x-x^2}{(3-x)^2}-\frac {4 (-1+e) e^{2 x} \left (1+e+e^2+e^3+e^4\right ) (-2+x) \left (8-9 x+2 x^2\right )}{(-3+x)^2}\right ) \, dx\\ &=\left (4 \left (1-e^5\right )\right ) \int \frac {e^{2 x} (-2+x) \left (8-9 x+2 x^2\right )}{(-3+x)^2} \, dx+\int \frac {-3 \left (4-e^5\right )+6 x-x^2}{(3-x)^2} \, dx\\ &=\left (4 \left (1-e^5\right )\right ) \int \left (-e^{2 x}-\frac {e^{2 x}}{(-3+x)^2}+\frac {2 e^{2 x}}{-3+x}+2 e^{2 x} x\right ) \, dx+\int \left (-1+\frac {3 \left (-1+e^5\right )}{(-3+x)^2}\right ) \, dx\\ &=-\frac {3 \left (1-e^5\right )}{3-x}-x-\left (4 \left (1-e^5\right )\right ) \int e^{2 x} \, dx-\left (4 \left (1-e^5\right )\right ) \int \frac {e^{2 x}}{(-3+x)^2} \, dx+\left (8 \left (1-e^5\right )\right ) \int \frac {e^{2 x}}{-3+x} \, dx+\left (8 \left (1-e^5\right )\right ) \int e^{2 x} x \, dx\\ &=-2 e^{2 x} \left (1-e^5\right )-\frac {3 \left (1-e^5\right )}{3-x}-\frac {4 e^{2 x} \left (1-e^5\right )}{3-x}-x+4 e^{2 x} \left (1-e^5\right ) x+8 e^6 \left (1-e^5\right ) \text {Ei}(-2 (3-x))-\left (4 \left (1-e^5\right )\right ) \int e^{2 x} \, dx-\left (8 \left (1-e^5\right )\right ) \int \frac {e^{2 x}}{-3+x} \, dx\\ &=-4 e^{2 x} \left (1-e^5\right )-\frac {3 \left (1-e^5\right )}{3-x}-\frac {4 e^{2 x} \left (1-e^5\right )}{3-x}-x+4 e^{2 x} \left (1-e^5\right ) x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 47, normalized size = 1.42 \begin {gather*} \frac {3-3 e^5+4 e^{2 x} (-2+x)^2-4 e^{5+2 x} (-2+x)^2+3 x-x^2}{-3+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 45, normalized size = 1.36 \begin {gather*} -\frac {x^{2} - 4 \, {\left (x^{2} - {\left (x^{2} - 4 \, x + 4\right )} e^{5} - 4 \, x + 4\right )} e^{\left (2 \, x\right )} - 3 \, x + 3 \, e^{5} - 3}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.67, size = 70, normalized size = 2.12 \begin {gather*} \frac {4 \, x^{2} e^{\left (2 \, x\right )} - 4 \, x^{2} e^{\left (2 \, x + 5\right )} - x^{2} - 16 \, x e^{\left (2 \, x\right )} + 16 \, x e^{\left (2 \, x + 5\right )} + 3 \, x - 3 \, e^{5} + 16 \, e^{\left (2 \, x\right )} - 16 \, e^{\left (2 \, x + 5\right )} + 3}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 55, normalized size = 1.67
method | result | size |
norman | \(\frac {\left (16-16 \,{\mathrm e}^{5}\right ) {\mathrm e}^{2 x}+\left (-16+16 \,{\mathrm e}^{5}\right ) x \,{\mathrm e}^{2 x}+\left (-4 \,{\mathrm e}^{5}+4\right ) x^{2} {\mathrm e}^{2 x}-x^{2}+12-3 \,{\mathrm e}^{5}}{x -3}\) | \(55\) |
risch | \(-x +\frac {3}{x -3}-\frac {3 \,{\mathrm e}^{5}}{x -3}-\frac {4 \left (x^{2} {\mathrm e}^{5}-4 x \,{\mathrm e}^{5}-x^{2}+4 \,{\mathrm e}^{5}+4 x -4\right ) {\mathrm e}^{2 x}}{x -3}\) | \(57\) |
default | \(\frac {3}{x -3}-x -\frac {3 \,{\mathrm e}^{5}}{x -3}+\frac {4 \,{\mathrm e}^{2 x}}{x -3}+64 \,{\mathrm e}^{5} \left (-\frac {{\mathrm e}^{2 x}}{x -3}-2 \,{\mathrm e}^{6} \expIntegralEi \left (1, 6-2 x \right )\right )-4 \,{\mathrm e}^{2 x}+4 x \,{\mathrm e}^{2 x}-104 \,{\mathrm e}^{5} \left (-7 \,{\mathrm e}^{6} \expIntegralEi \left (1, 6-2 x \right )-\frac {3 \,{\mathrm e}^{2 x}}{x -3}\right )+52 \,{\mathrm e}^{5} \left (\frac {{\mathrm e}^{2 x}}{2}-24 \,{\mathrm e}^{6} \expIntegralEi \left (1, 6-2 x \right )-\frac {9 \,{\mathrm e}^{2 x}}{x -3}\right )-8 \,{\mathrm e}^{5} \left (\frac {x \,{\mathrm e}^{2 x}}{2}+\frac {11 \,{\mathrm e}^{2 x}}{4}-81 \,{\mathrm e}^{6} \expIntegralEi \left (1, 6-2 x \right )-\frac {27 \,{\mathrm e}^{2 x}}{x -3}\right )\) | \(172\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -x - \frac {4 \, {\left (x^{3} {\left (e^{5} - 1\right )} - 7 \, x^{2} {\left (e^{5} - 1\right )} + 16 \, x {\left (e^{5} - 1\right )}\right )} e^{\left (2 \, x\right )}}{x^{2} - 6 \, x + 9} + \frac {64 \, e^{6} E_{2}\left (-2 \, x + 6\right )}{x - 3} - \frac {3 \, e^{5}}{x - 3} + \frac {3}{x - 3} + \int \frac {32 \, {\left (x {\left (3 \, e^{5} - 1\right )} - 12 \, e^{5} + 6\right )} e^{\left (2 \, x\right )}}{x^{3} - 9 \, x^{2} + 27 \, x - 27}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.72, size = 55, normalized size = 1.67 \begin {gather*} -\frac {x\,\left ({\mathrm {e}}^5-4\right )+{\mathrm {e}}^{2\,x}\,\left (16\,{\mathrm {e}}^5-16\right )+x^2-x\,{\mathrm {e}}^{2\,x}\,\left (16\,{\mathrm {e}}^5-16\right )+x^2\,{\mathrm {e}}^{2\,x}\,\left (4\,{\mathrm {e}}^5-4\right )}{x-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.23, size = 49, normalized size = 1.48 \begin {gather*} - x + \frac {\left (- 4 x^{2} e^{5} + 4 x^{2} - 16 x + 16 x e^{5} - 16 e^{5} + 16\right ) e^{2 x}}{x - 3} - \frac {-3 + 3 e^{5}}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________