Optimal. Leaf size=20 \[ x^2 \log \left (-e+e^{e^{10}}+\log \left (\frac {x}{4}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+\left (-2 e x+2 e^{e^{10}} x+2 x \log \left (\frac {x}{4}\right )\right ) \log \left (-e+e^{e^{10}}+\log \left (\frac {x}{4}\right )\right )}{-e+e^{e^{10}}+\log \left (\frac {x}{4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int x \left (\frac {1}{-e+e^{e^{10}}+\log \left (\frac {x}{4}\right )}+2 \log \left (-e+e^{e^{10}}+\log \left (\frac {x}{4}\right )\right )\right ) \, dx\\ &=\int \left (\frac {x}{-e \left (1-e^{-1+e^{10}}\right )+\log \left (\frac {x}{4}\right )}+2 x \log \left (-e \left (1-e^{-1+e^{10}}\right )+\log \left (\frac {x}{4}\right )\right )\right ) \, dx\\ &=2 \int x \log \left (-e \left (1-e^{-1+e^{10}}\right )+\log \left (\frac {x}{4}\right )\right ) \, dx+\int \frac {x}{-e \left (1-e^{-1+e^{10}}\right )+\log \left (\frac {x}{4}\right )} \, dx\\ &=2 \int x \log \left (-e \left (1-e^{-1+e^{10}}\right )+\log \left (\frac {x}{4}\right )\right ) \, dx+16 \operatorname {Subst}\left (\int \frac {e^{2 x}}{-e \left (1-e^{-1+e^{10}}\right )+x} \, dx,x,\log \left (\frac {x}{4}\right )\right )\\ &=16 e^{2 e-2 e^{e^{10}}} \text {Ei}\left (-2 \left (e-e^{e^{10}}-\log \left (\frac {x}{4}\right )\right )\right )+2 \int x \log \left (-e \left (1-e^{-1+e^{10}}\right )+\log \left (\frac {x}{4}\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 20, normalized size = 1.00 \begin {gather*} x^2 \log \left (-e+e^{e^{10}}+\log \left (\frac {x}{4}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 17, normalized size = 0.85 \begin {gather*} x^{2} \log \left (-e + e^{\left (e^{10}\right )} + \log \left (\frac {1}{4} \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 35, normalized size = 1.75 \begin {gather*} \frac {1}{2} \, x^{2} \log \left (\frac {1}{4} \, \pi ^{2} {\left (\mathrm {sgn}\relax (x) - 1\right )}^{2} + {\left (e - e^{\left (e^{10}\right )} - \log \left (\frac {1}{4} \, {\left | x \right |}\right )\right )}^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 18, normalized size = 0.90
method | result | size |
risch | \(x^{2} \ln \left (\ln \left (\frac {x}{4}\right )+{\mathrm e}^{{\mathrm e}^{10}}-{\mathrm e}\right )\) | \(18\) |
norman | \(x^{2} \ln \left (\ln \left (\frac {x}{4}\right )+{\mathrm e}^{{\mathrm e}^{10}}-{\mathrm e}\right )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{2} \log \left (-e + e^{\left (e^{10}\right )} - 2 \, \log \relax (2) + \log \relax (x)\right ) - 16 \, e^{\left (2 \, e - 2 \, e^{\left (e^{10}\right )}\right )} E_{1}\left (2 \, e - 2 \, e^{\left (e^{10}\right )} - 2 \, \log \left (\frac {1}{4} \, x\right )\right ) - \int -\frac {x}{e - e^{\left (e^{10}\right )} + 2 \, \log \relax (2) - \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.72, size = 17, normalized size = 0.85 \begin {gather*} x^2\,\ln \left (\ln \left (\frac {x}{4}\right )-\mathrm {e}+{\mathrm {e}}^{{\mathrm {e}}^{10}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 17, normalized size = 0.85 \begin {gather*} x^{2} \log {\left (\log {\left (\frac {x}{4} \right )} - e + e^{e^{10}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________