Optimal. Leaf size=24 \[ e^{\frac {\left (1+5 e^{-x}-e^x+\log (2)\right )^2}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 29.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right ) \left (-25-50 x+e^{4 x} (-1+2 x)+e^x (-10-10 x+(-10-10 x) \log (2))+e^{3 x} (2-2 x+(2-2 x) \log (2))+e^{2 x} \left (9-2 \log (2)-\log ^2(2)\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right ) \left (-5+e^{2 x}-10 x-2 e^{2 x} x-e^x (1+\log (2))\right ) \left (5-e^{2 x}+e^x (1+\log (2))\right )}{x^2} \, dx\\ &=\int \left (\frac {\exp \left (2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right ) (-1+2 x)}{x^2}-\frac {25 \exp \left (-2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right ) (1+2 x)}{x^2}-\frac {2 \exp \left (x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right ) (-1+x) (1+\log (2))}{x^2}-\frac {10 \exp \left (-x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right ) (1+x) (1+\log (2))}{x^2}-\frac {\exp \left (\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right ) \left (-9+\log ^2(2)+\log (4)\right )}{x^2}\right ) \, dx\\ &=-\left (25 \int \frac {\exp \left (-2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right ) (1+2 x)}{x^2} \, dx\right )-(2 (1+\log (2))) \int \frac {\exp \left (x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right ) (-1+x)}{x^2} \, dx-(10 (1+\log (2))) \int \frac {\exp \left (-x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right ) (1+x)}{x^2} \, dx+\left (9-\log ^2(2)-\log (4)\right ) \int \frac {\exp \left (\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x^2} \, dx+\int \frac {\exp \left (2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right ) (-1+2 x)}{x^2} \, dx\\ &=-\left (25 \int \left (\frac {\exp \left (-2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x^2}+\frac {2 \exp \left (-2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x}\right ) \, dx\right )-(2 (1+\log (2))) \int \left (-\frac {\exp \left (x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x^2}+\frac {\exp \left (x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x}\right ) \, dx-(10 (1+\log (2))) \int \left (\frac {\exp \left (-x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x^2}+\frac {\exp \left (-x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x}\right ) \, dx+\left (9-\log ^2(2)-\log (4)\right ) \int \frac {\exp \left (\frac {e^{-2 x} \left (5-e^{2 x}+e^x (1+\log (2))\right )^2}{x}\right )}{x^2} \, dx+\int \left (-\frac {\exp \left (2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x^2}+\frac {2 \exp \left (2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x}\right ) \, dx\\ &=2 \int \frac {\exp \left (2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x} \, dx-25 \int \frac {\exp \left (-2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x^2} \, dx-50 \int \frac {\exp \left (-2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x} \, dx+(2 (1+\log (2))) \int \frac {\exp \left (x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x^2} \, dx-(2 (1+\log (2))) \int \frac {\exp \left (x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x} \, dx-(10 (1+\log (2))) \int \frac {\exp \left (-x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x^2} \, dx-(10 (1+\log (2))) \int \frac {\exp \left (-x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x} \, dx+\left (9-\log ^2(2)-\log (4)\right ) \int \frac {\exp \left (\frac {e^{-2 x} \left (5-e^{2 x}+e^x (1+\log (2))\right )^2}{x}\right )}{x^2} \, dx-\int \frac {\exp \left (2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 4.85, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{-2 x+\frac {e^{-2 x} \left (25+e^{4 x}+e^{3 x} (-2-2 \log (2))+e^x (10+10 \log (2))+e^{2 x} \left (-9+2 \log (2)+\log ^2(2)\right )\right )}{x}} \left (-25-50 x+e^{4 x} (-1+2 x)+e^x (-10-10 x+(-10-10 x) \log (2))+e^{3 x} (2-2 x+(2-2 x) \log (2))+e^{2 x} \left (9-2 \log (2)-\log ^2(2)\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 62, normalized size = 2.58 \begin {gather*} e^{\left (2 \, x - \frac {{\left (2 \, {\left (\log \relax (2) + 1\right )} e^{\left (3 \, x\right )} + {\left (2 \, x^{2} - \log \relax (2)^{2} - 2 \, \log \relax (2) + 9\right )} e^{\left (2 \, x\right )} - 10 \, {\left (\log \relax (2) + 1\right )} e^{x} - e^{\left (4 \, x\right )} - 25\right )} e^{\left (-2 \, x\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 62, normalized size = 2.58 \begin {gather*} e^{\left (\frac {{\left (e^{\left (2 \, x\right )} \log \relax (2)^{2} - 2 \, e^{\left (3 \, x\right )} \log \relax (2) + 2 \, e^{\left (2 \, x\right )} \log \relax (2) + 10 \, e^{x} \log \relax (2) + e^{\left (4 \, x\right )} - 2 \, e^{\left (3 \, x\right )} - 9 \, e^{\left (2 \, x\right )} + 10 \, e^{x} + 25\right )} e^{\left (-2 \, x\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.23, size = 56, normalized size = 2.33
method | result | size |
risch | \(\left (\frac {1}{4}\right )^{\frac {{\mathrm e}^{x}}{x}} 4^{\frac {1}{x}} 1024^{\frac {{\mathrm e}^{-x}}{x}} {\mathrm e}^{\frac {10 \,{\mathrm e}^{-x}+\ln \relax (2)^{2}-9+{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x}+25 \,{\mathrm e}^{-2 x}}{x}}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 75, normalized size = 3.12 \begin {gather*} e^{\left (\frac {10 \, e^{\left (-x\right )} \log \relax (2)}{x} - \frac {2 \, e^{x} \log \relax (2)}{x} + \frac {\log \relax (2)^{2}}{x} + \frac {e^{\left (2 \, x\right )}}{x} + \frac {10 \, e^{\left (-x\right )}}{x} + \frac {25 \, e^{\left (-2 \, x\right )}}{x} - \frac {2 \, e^{x}}{x} + \frac {2 \, \log \relax (2)}{x} - \frac {9}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.93, size = 73, normalized size = 3.04 \begin {gather*} 4^{\frac {{\mathrm {e}}^{-x}\,\left ({\mathrm {e}}^x-{\mathrm {e}}^{2\,x}+5\right )}{x}}\,{\mathrm {e}}^{\frac {{\ln \relax (2)}^2}{x}}\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^x}{x}}\,{\mathrm {e}}^{-\frac {9}{x}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{2\,x}}{x}}\,{\mathrm {e}}^{\frac {10\,{\mathrm {e}}^{-x}}{x}}\,{\mathrm {e}}^{\frac {25\,{\mathrm {e}}^{-2\,x}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.64, size = 54, normalized size = 2.25 \begin {gather*} e^{\frac {\left (e^{4 x} + \left (-2 - 2 \log {\relax (2 )}\right ) e^{3 x} + \left (-9 + \log {\relax (2 )}^{2} + 2 \log {\relax (2 )}\right ) e^{2 x} + \left (10 \log {\relax (2 )} + 10\right ) e^{x} + 25\right ) e^{- 2 x}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________