Optimal. Leaf size=28 \[ e^{\frac {e^{3+2 x} (3+(-4+x) x)}{x \log (2)}}+5 x \]
________________________________________________________________________________________
Rubi [F] time = 2.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right ) \left (-3+6 x-7 x^2+2 x^3\right )+5 x^2 \log (2)}{x^2 \log (2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right ) \left (-3+6 x-7 x^2+2 x^3\right )+5 x^2 \log (2)}{x^2} \, dx}{\log (2)}\\ &=\frac {\int \left (\frac {\exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right ) \left (-3+6 x-7 x^2+2 x^3\right )}{x^2}+\log (32)\right ) \, dx}{\log (2)}\\ &=\frac {x \log (32)}{\log (2)}+\frac {\int \frac {\exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right ) \left (-3+6 x-7 x^2+2 x^3\right )}{x^2} \, dx}{\log (2)}\\ &=\frac {x \log (32)}{\log (2)}+\frac {\int \left (-7 \exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right )-\frac {3 \exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right )}{x^2}+\frac {6 \exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right )}{x}+2 \exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right ) x\right ) \, dx}{\log (2)}\\ &=\frac {x \log (32)}{\log (2)}+\frac {2 \int \exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right ) x \, dx}{\log (2)}-\frac {3 \int \frac {\exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right )}{x^2} \, dx}{\log (2)}+\frac {6 \int \frac {\exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right )}{x} \, dx}{\log (2)}-\frac {7 \int \exp \left (3+2 x+\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}\right ) \, dx}{\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.72, size = 29, normalized size = 1.04 \begin {gather*} e^{\frac {e^{3+2 x} \left (3-4 x+x^2\right )}{x \log (2)}}+5 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 54, normalized size = 1.93 \begin {gather*} {\left (5 \, x e^{\left (2 \, x + 3\right )} + e^{\left (\frac {{\left (x^{2} - 4 \, x + 3\right )} e^{\left (2 \, x + 3\right )} + {\left (2 \, x^{2} + 3 \, x\right )} \log \relax (2)}{x \log \relax (2)}\right )}\right )} e^{\left (-2 \, x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {5 \, x^{2} \log \relax (2) + {\left (2 \, x^{3} - 7 \, x^{2} + 6 \, x - 3\right )} e^{\left (2 \, x + \frac {{\left (x^{2} - 4 \, x + 3\right )} e^{\left (2 \, x + 3\right )}}{x \log \relax (2)} + 3\right )}}{x^{2} \log \relax (2)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 26, normalized size = 0.93
method | result | size |
risch | \(5 x +{\mathrm e}^{\frac {\left (x -1\right ) \left (x -3\right ) {\mathrm e}^{2 x +3}}{x \ln \relax (2)}}\) | \(26\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {\left (x^{2}-4 x +3\right ) {\mathrm e}^{2 x +3}}{x \ln \relax (2)}}+5 x^{2}}{x}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 55, normalized size = 1.96 \begin {gather*} \frac {5 \, x \log \relax (2) + e^{\left (\frac {x e^{\left (2 \, x + 3\right )}}{\log \relax (2)} - \frac {4 \, e^{\left (2 \, x + 3\right )}}{\log \relax (2)} + \frac {3 \, e^{\left (2 \, x + 3\right )}}{x \log \relax (2)}\right )} \log \relax (2)}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.82, size = 47, normalized size = 1.68 \begin {gather*} 5\,x+{\mathrm {e}}^{\frac {3\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^3}{x\,\ln \relax (2)}}\,{\mathrm {e}}^{-\frac {4\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^3}{\ln \relax (2)}}\,{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^3}{\ln \relax (2)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 24, normalized size = 0.86 \begin {gather*} 5 x + e^{\frac {\left (x^{2} - 4 x + 3\right ) e^{2 x + 3}}{x \log {\relax (2 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________