Optimal. Leaf size=23 \[ 2+e^{-1+4 e^{\frac {256 x^4}{81}}+5 x}+2 x \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 22, normalized size of antiderivative = 0.96, number of steps used = 3, number of rules used = 2, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {12, 6706} \begin {gather*} e^{4 e^{\frac {256 x^4}{81}}+5 x-1}+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{81} \int \left (162+e^{-1+4 e^{\frac {256 x^4}{81}}+5 x} \left (405+4096 e^{\frac {256 x^4}{81}} x^3\right )\right ) \, dx\\ &=2 x+\frac {1}{81} \int e^{-1+4 e^{\frac {256 x^4}{81}}+5 x} \left (405+4096 e^{\frac {256 x^4}{81}} x^3\right ) \, dx\\ &=e^{-1+4 e^{\frac {256 x^4}{81}}+5 x}+2 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 22, normalized size = 0.96 \begin {gather*} e^{-1+4 e^{\frac {256 x^4}{81}}+5 x}+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 18, normalized size = 0.78 \begin {gather*} 2 \, x + e^{\left (5 \, x + 4 \, e^{\left (\frac {256}{81} \, x^{4}\right )} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 18, normalized size = 0.78 \begin {gather*} 2 \, x + e^{\left (5 \, x + 4 \, e^{\left (\frac {256}{81} \, x^{4}\right )} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 0.83
method | result | size |
default | \(2 x +{\mathrm e}^{4 \,{\mathrm e}^{\frac {256 x^{4}}{81}}+5 x -1}\) | \(19\) |
norman | \(2 x +{\mathrm e}^{4 \,{\mathrm e}^{\frac {256 x^{4}}{81}}+5 x -1}\) | \(19\) |
risch | \(2 x +{\mathrm e}^{4 \,{\mathrm e}^{\frac {256 x^{4}}{81}}+5 x -1}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 18, normalized size = 0.78 \begin {gather*} 2 \, x + e^{\left (5 \, x + 4 \, e^{\left (\frac {256}{81} \, x^{4}\right )} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.98, size = 23, normalized size = 1.00 \begin {gather*} {\mathrm {e}}^{-1}\,\left (2\,x\,\mathrm {e}+{\mathrm {e}}^{5\,x}\,{\mathrm {e}}^{4\,{\mathrm {e}}^{\frac {256\,x^4}{81}}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 19, normalized size = 0.83 \begin {gather*} 2 x + e^{5 x + 4 e^{\frac {256 x^{4}}{81}} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________